Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 10(3)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809610

RESUMEN

An increasingly apparent role of noncoding RNA (ncRNAs) is to coordinate gene expression during environmental stress. A mounting body of evidence implicates small RNAs (sRNAs) as key drivers of Salmonella stress survival. Generally thought to be 50-500 nucleotides in length and to occur in intergenic regions, sRNAs typically regulate protein expression through base pairing with mRNA targets. In this work, through employing a refined definition of sRNAs allowing for shorter sequences and sRNA loci to overlap with annotated protein-coding gene loci, we have identified 475 previously unannotated sRNAs that are significantly differentially expressed during carbon starvation (C-starvation). Northern blotting and quantitative RT-PCRs confirm the expressions and identities of several of these novel sRNAs, and our computational analyses find the majority to be highly conserved and structurally related to known sRNAs. Importantly, we show that deletion of one of the sRNAs dynamically expressed during C-starvation, sRNA4130247, significantly impairs the Salmonella C-starvation response (CSR), confirming its involvement in the Salmonella CSR. In conclusion, the work presented here provides the first-ever characterization of intragenic sRNAs in Salmonella, experimentally confirms that sRNAs dynamically expressed during the CSR are directly involved in stress survival, and more than doubles the Salmonella enterica sRNAs described to date.

2.
RNA Biol ; 16(11): 1643-1657, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31390935

RESUMEN

Noncoding RNA (ncRNA) modulation of gene expression has now been ubiquitously observed across all domains of life. An increasingly apparent role of ncRNAs is to coordinate changes in gene expressions in response to environmental stress. Salmonella enterica, a common food-born pathogen, is known for its striking ability to survive, adapt, and thrive in various unfavourable environments which makes it a particularly difficult pathogen to eliminate as well as an interesting model in which to study ncRNA contributions to cellular stress response. Mounting evidence now suggests that small RNAs (sRNAs) represent key regulators of Salmonella stress adaptation. Approximately 50-500 nucleotides in length, sRNAs regulate gene expression through complementary base pairing with molecular targets and have recently been suggested to outnumber protein-coding genes in bacteria. In this work, we employ small RNA transcriptome sequencing to characterize changes in the sRNA profiles of Salmonella in response to desiccation. In all, we identify 102 previously annotated sRNAs significantly differentially expressed during desiccation; and excitingly, 71 novel sRNAs likewise differentially expressed. Small transcript northern blotting and qRT-PCRs confirm the identities and expressions of several of our novel sRNAs, and computational analyses indicate the majority are highly conserved and structurally related to characterized sRNAs. Predicted sRNA targets include several proteins necessary for desiccation survival and this, in part, suggests a role for desiccation-regulated sRNAs in this stress response. Furthermore, we find individual knock-outs of two of the novel sRNAs identified herein, either sRNA1320429 or sRNA3981754, significantly impairs the ability of Salmonella to survive desiccation, confirming their involvements (and suggesting the potential involvements of other sRNAs we identify in this work) in the Salmonella response to desiccation.


Asunto(s)
Perfilación de la Expresión Génica/métodos , ARN Pequeño no Traducido/genética , Salmonella typhimurium/fisiología , Desecación , Regulación Bacteriana de la Expresión Génica , Anotación de Secuencia Molecular , ARN Bacteriano/genética , Salmonella typhimurium/genética , Análisis de Secuencia de ARN , Estrés Fisiológico
3.
RNA Biol ; 13(3): 331-42, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26853797

RESUMEN

Small RNAs (sRNAs) are short (∼50-200 nucleotides) noncoding RNAs that regulate cellular activities across bacteria. Salmonella enterica starved of a carbon-energy (C) source experience a host of genetic and physiological changes broadly referred to as the starvation-stress response (SSR). In an attempt to identify novel sRNAs contributing to SSR control, we grew log-phase, 5-h C-starved and 24-h C-starved cultures of the virulent Salmonella enterica subspecies enterica serovar Typhimurium strain SL1344 and comprehensively sequenced their small RNA transcriptomes. Strikingly, after employing a novel strategy for sRNA discovery based on identifying dynamic transcripts arising from "gene-empty" regions, we identify 58 wholly undescribed Salmonella sRNA genes potentially regulating SSR averaging an ∼1,000-fold change in expression between log-phase and C-starved cells. Importantly, the expressions of individual sRNA loci were confirmed by both comprehensive transcriptome analyses and northern blotting of select candidates. Of note, we find 43 candidate sRNAs share significant sequence identity to characterized sRNAs in other bacteria, and ∼70% of our sRNAs likely assume characteristic sRNA structural conformations. In addition, we find 53 of our 58 candidate sRNAs either overlap neighboring mRNA loci or share significant sequence complementarity to mRNAs transcribed elsewhere in the SL1344 genome strongly suggesting they regulate the expression of transcripts via antisense base-pairing. Finally, in addition to this work resulting in the identification of 58 entirely novel Salmonella enterica genes likely participating in the SSR, we also find evidence suggesting that sRNAs are significantly more prevalent than currently appreciated and that Salmonella sRNAs may actually number in the thousands.


Asunto(s)
Perfilación de la Expresión Génica/métodos , ARN Pequeño no Traducido/genética , Salmonella typhimurium/crecimiento & desarrollo , Análisis de Secuencia de ARN/métodos , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/genética , Salmonella typhimurium/genética , Homología de Secuencia de Ácido Nucleico , Estrés Fisiológico
4.
Antonie Van Leeuwenhoek ; 98(1): 51-63, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20232248

RESUMEN

Carbon-energy source (C)-starved cells of Salmonella enterica serovar Typhimurium (S. Typhimurium) are remarkably more resistant to stress than actively growing ones. Carbon-starved S. Typhimurium is capable of withstanding extended periods of starvation and assault from a number of different stresses that rapidly kill growing cells. These unique properties of the C-starved cell are the direct result of a series of genetic and physiological adaptations referred to as the starvation-stress response (SSR). Previous work established that the SSR of S. Typhimurium is partially regulated by the extracytoplasmic function sigma factor sigma(E). As part of an effort to identify sigma(E)-regulated SSR genes, we investigated surA and fkpA, encoding two different classes of peptidyl-prolyl isomerase that function in folding cell envelope proteins. Both surA and fkpA are members of the heat-shock-inducible sigma(E) regulon of Escherichia coli. Although both genes are expressed in C-starved Salmonella cells, evidence indicates that surA and fkpA are not C-starvation-inducible. Furthermore, their expression during C-starvation does not appear to be sigma(E)-dependent. Nonetheless, surA and fkpA proved to be important, to differing degrees, for long-term C-starvation survival and for the cross-resistance of C-starved cells to high temperature, acidic pH, and the antimicrobial peptide polymyxin B, but neither were required for cross-resistance to oxidative stress. These results point to fundamental differences between heat-shock-inducible and C-starvation-inducible genes regulated by sigma(E) and suggest that genes other than surA and fkpA are involved in the sigma(E)-regulated branch of the SSR in Salmonella.


Asunto(s)
Proteínas Bacterianas/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Salmonella typhimurium/fisiología , Estrés Fisiológico , Ácidos/toxicidad , Antibacterianos/farmacología , Carbono/metabolismo , Regulación Bacteriana de la Expresión Génica , Calor , Polimixina B/farmacología , Regulón , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/metabolismo , Salmonella typhimurium/efectos de la radiación , Factor sigma/metabolismo
5.
Microbiology (Reading) ; 153(Pt 7): 2148-2158, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17600059

RESUMEN

Carbon-energy source starvation is a commonly encountered stress that can influence the epidemiology and virulence of Salmonella enterica serovars. Salmonella responds to C-starvation by eliciting the starvation-stress response (SSR), which allows for long-term C-starvation survival and cross-resistance to other stresses. The stiC locus was identified as a C-starvation-inducible, sigma(S)-dependent locus required for a maximal SSR. We report here that the stiC locus is an operon composed of the yohC (putative transport protein) and pbpG (penicillin-binding protein-7/8) genes. yohC pbpG transcription is initiated from a sigma(S)-dependent C-starvation-inducible promoter upstream of yohC. Another (sigma(S)-independent) promoter, upstream of pbpG, drives lower constitutive pbpG transcription, primarily during exponential phase. C-starvation-inducible pbpG expression was required for development of the SSR in 5 h, but not 24 h, C-starved cells; yohC was dispensable for the SSR. Furthermore, the yohC pbpG operon is induced within MDCK epithelial cells, but was not essential for oral virulence in BALB/c mice. Thus, PBP 7 is required for physiological changes, occurring within the first few hours of C-starvation, essential for the development of the SSR. Lack of PBP 7, however, can be compensated for by further physiological changes developed in 24 h C-starved cells. This supports the dynamic overlapping and distinct nature of resistance pathways within the Salmonella SSR.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Estrés Oxidativo , Proteínas de Unión a las Penicilinas/biosíntesis , Proteínas Periplasmáticas/biosíntesis , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/fisiología , Factor sigma/metabolismo , Adaptación Fisiológica , Ciclo Celular , Línea Celular , Regulación Bacteriana de la Expresión Génica , Salmonella typhimurium/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Microbiology (Reading) ; 151(Pt 7): 2373-2383, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16000727

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) elicits the starvation-stress response (SSR) due to starvation for an essential nutrient, e.g. a carbon/energy source (C-source). As part of the SSR, the alternative sigma factor sigma(E) is activated and induced. The authors suspect that this activation is, in part, triggered by changes in the S. Typhimurium cell envelope occurring during the adaptation from growth to carbon/energy starvation (C-starvation), and resulting in an increased need for sigma(E)-regulated factors involved in the proper folding and assembly of newly synthesized proteins destined for this extracytoplasmic compartment. This led to the hypothesis that a sigma(E) activation signal might arise during C-source shifts that cause the induction of proteins localized to the extracytoplasmic compartment, i.e. the outer membrane or periplasm, of the cell. To test this hypothesis, cultures were grown in minimal medium containing enough glucose to reach mid-exponential-phase, plus a non-limiting amount of a secondary 'less-preferred' but utilizable carbon/energy source. The sigma(E) activity was then monitored using plasmids carrying rpoEP1- and rpoEP2-lacZ transcriptional fusions, which exhibit sigma(E)-independent and -dependent lacZ expression, respectively. The secondary C-sources maltose, succinate and citrate, which have extracytoplasmic components involved in their utilization (e.g. LamB), resulted in a discernible diauxic lag period and a sustained increase in sigma(E) activity. Growth transition from glucose to other utilizable phosphotransferase (PTS) and non-PTS C-sources, such as trehalose, mannose, mannitol, fructose, glycerol, d-galactose or l-arabinose, did not cause a discernible diauxic lag period or a sustained increase in sigma(E) activity. Interestingly, a shift from glucose to melibiose, which does not use an extracytoplasmic-localized protein for uptake, did cause an observable diauxic lag period but did not result in a sustained increase in sigma(E) activity. In addition, overexpression of LamB from an arabinose-inducible promoter leads to a significant increase in sigma(E) activity in the absence of a glucose to maltose shift or C-starvation. Furthermore, a DeltalamB : : Omega-Km(r) mutant, lacking the LamB maltoporin, exhibited an approximately twofold reduction in the sustained sigma(E) activity observed during a glucose to maltose shift, again supporting the hypothesis. Interestingly, the LamB protein lacks the typical Y-X-F terminal tripeptide of the OmpC-like peptides that activate DegS protease activity leading to sigma(E) activation. It does, however, possess a terminal pentapeptide (Q-M-E-I-W-W) that may function as a ligand for a putative class II PDZ-binding site. The authors therefore propose that the sigma(E) regulon of S. Typhimurium not only is induced in response to deleterious environmental conditions, but also plays a role in the adaptation of cells to new growth conditions that necessitate changes in the extracytoplasmic compartment of the cell, which may involve alternative signal recognition and activation pathways that are independent of DegS.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Salmonella typhimurium/metabolismo , Factor sigma/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Glucosa/metabolismo , Salmonella typhimurium/genética , Factor sigma/genética
7.
Infect Immun ; 71(9): 5386-8, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12933889

RESUMEN

FkpA is a peptidylprolyl isomerase whose expression is regulated by the alternative sigma factor, sigma factor E (sigma(E)). In contrast to the results of a previous report, inactivation of fkpA was found to have only a minor effect on the ability of Salmonella enterica serovar Typhimurium to invade and survive within epithelial and macrophage cell lines and cause infection in mice. However, an effect of the fkpA mutation on serovar Typhimurium virulence was seen if the mutation was combined with mutations in surA or htrA, two other sigma(E)-regulated genes, which encode proteins involved in protein folding and/or degradation in the periplasm.


Asunto(s)
Proteínas Portadoras , Inmunofilinas/fisiología , Proteínas de la Membrana/fisiología , Isomerasa de Peptidilprolil/fisiología , Salmonella typhimurium/enzimología , Salmonella typhimurium/patogenicidad , Animales , Células CACO-2 , Línea Celular , Genes Bacterianos , Proteínas de Choque Térmico/fisiología , Humanos , Inmunofilinas/genética , Proteínas de la Membrana/genética , Ratones , Mutación , Isomerasa de Peptidilprolil/genética , Proteínas Periplasmáticas/fisiología , Salmonella typhimurium/genética , Serina Endopeptidasas/fisiología , Factor sigma/fisiología , Factores de Transcripción/fisiología , Virulencia/genética , Virulencia/fisiología
8.
Microbiology (Reading) ; 148(Pt 1): 113-122, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11782504

RESUMEN

Starvation of Salmonella enterica serovar Typhimurium (S. Typhimurium) for an exogenous source of carbon and energy (C-starvation) induces the starvation-stress response (SSR). The SSR functions to (i) maintain viability during long-term C-starvation and (ii) generate cross-resistance to other environmental stresses. The SSR is, at least partially, under the control of the alternative sigma factor, sigma(S). It is hypothesized that C-starvation causes cell envelope stresses that could induce the sigma(E) and/or Cpx regulons, both of which control extracytoplasmic functions and, thus, may play a role in the regulation of the SSR. In support of this hypothesis, Western blot analysis showed that the relative levels of sigma(E) increased during C-starvation, peaking after approximately 72 h of C-starvation; in contrast, CpxR levels remained relatively constant from exponential phase up to 72 h of C-starvation. To determine if sigma(E), and thus the regulon it controls, is an essential component of the SSR, several mutant strains were compared for their abilities to survive long-term C-starvation and to develop C-starvation-induced (CSI) cross-resistances. An rpoE mutant strain was significantly impaired in both long-term C-starvation survival (LT-CSS) and in CSI cross-resistance to challenges with 20 mM H(2)O(2) for 40 min, 55 degrees C for 16 min, pH 3.1 for 60 min and 870.2 USP U polymyxin B ml(-1) (PmB) for 60 min, to varying degrees. These results suggest that C-starvation can generate signals that induce the rpoE regulon and that one or more members of the sigma(E) regulon are required for maximal SSR function. Furthermore, evidence suggests that the sigma(E) and sigma(S) regulons function through separate mechanisms in the SSR. In contrast, C-starvation does not appear to generate signals required for Cpx regulon induction which support the findings that it is not required for LT-CSS or cross-resistance to H(2)O(2), pH 3.1 or PmB challenges. However, it was required to achieve maximal cross-resistance to 55 degrees C. Therefore, sigma(E) is a key regulatory component of the SSR and represents an additional sigma factor required for the SSR of Salmonella.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Respuesta al Choque Térmico , Salmonella typhimurium/fisiología , Factor sigma/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Western Blotting , Carbono/metabolismo , Medios de Cultivo , Mutación , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , Factor sigma/genética , Factores de Transcripción/genética
9.
Microbiology (Reading) ; 145 ( Pt 11): 3035-3045, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10589711

RESUMEN

The starvation-stress response (SSR) of Salmonella typhimurium includes gene products necessary for starvation avoidance, starvation survival and virulence for this bacterium. Numerous genetic loci induced during carbon-source starvation and required for the long-term-starvation survival of this bacterium have been identified. The SSR not only protects the cell against the adverse effects of long-term starvation but also provides cross-resistance to other environmental stresses, e.g. thermal challenge (55 degrees C) or acid-pH challenge (pH 2.8). One carbon-starvation-inducible lac fusion, designated stiA was previously reported to be a sigma(S)-dependent SSR locus that is phosphate-starvation, nitrogen-starvation and H2O2 inducible, positively regulated by (p)ppGpp in a relA-dependent manner, and negatively regulated by cAMP:cAMP receptor protein complex and OxyR. We have discovered through sequence analysis and subsequent biochemical analysis that the stiA::lac fusion, and a similarly regulated lac fusion designated sti-99, lie at separate sites within the first gene (narZ) of an operon encoding a cryptic nitrate reductase (narZYWV) of unknown physiological function. In this study, it was demonstrated that narZ was negatively regulated by the global regulator Fnr during anaerobiosis. Interestingly, narZ(YWV) was required for carbon-starvation-inducible thermotolerance and acid tolerance. In addition, narZ expression was induced approximately 20-fold intracellularly in Madin-Darby canine kidney epithelial cells and 16-fold in intracellular salts medium, which is believed to mimic the intracellular milieu. Also, a narZ1 knock-out mutation increased the LD50 approximately 10-fold for S. typhimurium SL1344 delivered orally in the mouse virulence model. Thus, the previously believed cryptic and constitutive narZYWV operon is in fact highly regulated by a complex network of environmental-stress signals and global regulatory functions, indicating a central role in the physiology of starved and stressed cells.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Escherichia coli , Nitrato Reductasas/genética , Salmonella typhimurium/fisiología , Secuencia de Aminoácidos , Animales , Fusión Artificial Génica , Proteínas Bacterianas/metabolismo , Línea Celular , Medios de Cultivo/química , Elementos Transponibles de ADN , Genes Reguladores , Concentración de Iones de Hidrógeno , Proteínas Hierro-Azufre/genética , Operón Lac/fisiología , Ratones , Ratones Endogámicos BALB C , Mutación , Nitrato-Reductasa , Nitrato Reductasas/metabolismo , Salmonella typhimurium/patogenicidad , Factor sigma , Temperatura , Virulencia
10.
Microbiology (Reading) ; 145 ( Pt 1): 15-31, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10206693

RESUMEN

Salmonella enterica serovar Typhimurium (S. typhimurium) is an enteric pathogen that causes significant morbidity in humans and other mammals. During their life cycle, salmonellae must survive frequent exposures to a variety of environmental stresses, e.g. carbon-source (C) starvation. The starvation-stress response (SSR) of S. typhimurium encompasses the genetic and physiological realignments that occur when an essential nutrient becomes limiting for bacterial growth. The function of the SSR is to produce a cell capable of surviving long-term starvation. This paper reports that three C-starvation-inducible lac fusions from an S. typhimurium C-starvation-inducible lac fusion library are all within a gene identified as fadF, which encodes an acyl-CoA dehydrogenase (ACDH) specific for medium-/long-chain fatty acids. This identification is supported by several findings: (a) significant homology at the amino acid sequence level with the ACDH enzymes from other bacteria and eukaryotes, (b) undetectable beta-oxidation levels in fadF insertion mutants, (c) inability of fad insertion mutants to grow on oleate or decanoate as a sole C-source, and (d) inducibility of fadF::lac fusions by the long-chain fatty acid oleate. In addition, the results indicate that the C-starvation-induction of fadF is under negative control by the FadR global regulator and positive control by the cAMP:cAMP receptor protein complex and ppGpp. It is also shown that the fadF locus is important for C-starvation-survival in S. typhimurium. Furthermore, the results demonstrate that fadF is induced within cultured Madin-Darby canine kidney (MDCK) epithelial cells, suggesting that signals for its induction (C-starvation and/or long-chain fatty acids) may be present in the intracellular environment encountered by S. typhimurium. However, fadF insertion mutations did not have an overt effect on mouse virulence.


Asunto(s)
Acil-CoA Deshidrogenasa de Cadena Larga/genética , Salmonella typhimurium/fisiología , Acil-CoA Deshidrogenasa , Acil-CoA Deshidrogenasa de Cadena Larga/química , Acil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Proteínas Portadoras , Línea Celular , Mapeo Cromosómico , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/fisiología , Perros , Ácidos Grasos/metabolismo , Femenino , Guanosina Tetrafosfato/metabolismo , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Salmonelosis Animal/microbiología , Salmonella typhimurium/enzimología , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Homología de Secuencia de Aminoácido , Factor sigma/genética , Factor sigma/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...