Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Cardiovasc Magn Reson ; 26(1): 101006, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38309581

RESUMEN

BACKGROUND: Four-dimensional (4D) flow magnetic resonance imaging (MRI) often relies on the injection of gadolinium- or iron-oxide-based contrast agents to improve vessel delineation. In this work, a novel technique is developed to acquire and reconstruct 4D flow data with excellent dynamic visualization of blood vessels but without the need for contrast injection. Synchronization of Neighboring Acquisitions by Physiological Signals (SyNAPS) uses pilot tone (PT) navigation to retrospectively synchronize the reconstruction of two free-running three-dimensional radial acquisitions, to create co-registered anatomy and flow images. METHODS: Thirteen volunteers and two Marfan syndrome patients were scanned without contrast agent using one free-running fast interrupted steady-state (FISS) sequence and one free-running phase-contrast MRI (PC-MRI) sequence. PT signals spanning the two sequences were recorded for retrospective respiratory motion correction and cardiac binning. The magnitude and phase images reconstructed, respectively, from FISS and PC-MRI, were synchronized to create SyNAPS 4D flow datasets. Conventional two-dimensional (2D) flow data were acquired for reference in ascending (AAo) and descending aorta (DAo). The blood-to-myocardium contrast ratio, dynamic vessel area, net volume, and peak flow were used to compare SyNAPS 4D flow with Native 4D flow (without FISS information) and 2D flow. A score of 0-4 was given to each dataset by two blinded experts regarding the feasibility of performing vessel delineation. RESULTS: Blood-to-myocardium contrast ratio for SyNAPS 4D flow magnitude images (1.5 ± 0.3) was significantly higher than for Native 4D flow (0.7 ± 0.1, p < 0.01) and was comparable to 2D flow (2.3 ± 0.9, p = 0.02). Image quality scores of SyNAPS 4D flow from the experts (M.P.: 1.9 ± 0.3, E.T.: 2.5 ± 0.5) were overall significantly higher than the scores from Native 4D flow (M.P.: 1.6 ± 0.6, p = 0.03, E.T.: 0.8 ± 0.4, p < 0.01) but still significantly lower than the scores from the reference 2D flow datasets (M.P.: 2.8 ± 0.4, p < 0.01, E.T.: 3.5 ± 0.7, p < 0.01). The Pearson correlation coefficient between the dynamic vessel area measured on SyNAPS 4D flow and that from 2D flow was 0.69 ± 0.24 for the AAo and 0.83 ± 0.10 for the DAo, whereas the Pearson correlation between Native 4D flow and 2D flow measurements was 0.12 ± 0.48 for the AAo and 0.08 ± 0.39 for the DAo. Linear correlations between SyNAPS 4D flow and 2D flow measurements of net volume (r2 = 0.83) and peak flow (r2 = 0.87) were larger than the correlations between Native 4D flow and 2D flow measurements of net volume (r2 = 0.79) and peak flow (r2 = 0.76). CONCLUSION: The feasibility and utility of SyNAPS were demonstrated for joint whole-heart anatomical and flow MRI without requiring electrocardiography gating, respiratory navigators, or contrast agents. Using SyNAPS, a high-contrast anatomical imaging sequence can be used to improve 4D flow measurements that often suffer from poor delineation of vessel boundaries in the absence of contrast agents.

2.
Int J Cardiovasc Imaging ; 40(2): 261-273, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38082073

RESUMEN

The electrocardiogram (ECG) signal is prone to distortions from gradient and radiofrequency interference and the magnetohydrodynamic effect during cardiovascular magnetic resonance imaging (CMR). Although Pilot Tone Cardiac (PTC) triggering has the potential to overcome these limitations, effectiveness across various CMR techniques has yet to be established. To evaluate the performance of PTC triggering in a comprehensive CMR exam. Fifteen volunteers and 20 patients were recruited at two centers. ECG triggered images were collected for comparison in a subset of sequences. The PTC trigger accuracy was evaluated against ECG in cine acquisitions. Two experienced readers scored image quality in PTC-triggered cine, late gadolinium enhancement (LGE), and T1- and T2-weighted dark-blood turbo spin echo (DB-TSE) images. Quantitative cardiac function, flow, and parametric mapping values obtained using PTC and ECG triggered sequences were compared. Breath-held segmented cine used for trigger timing analysis was collected in 15 volunteers and 14 patients. PTC calibration failed in three volunteers and one patient; ECG trigger recording failed in one patient. Out of 1987 total heartbeats, three mismatched trigger PTC-ECG pairs were found. Image quality scores showed no significant difference between PTC and ECG triggering. There was no significant difference found in quantitative measurements in volunteers. In patients, the only significant difference was found in post-contrast T1 (p = 0.04). ICC showed moderate to excellent agreement in all measurements. PTC performance was equivalent to ECG in terms of triggering consistency, image quality, and quantitative image measurements across multiple CMR applications.


Asunto(s)
Medios de Contraste , Gadolinio , Humanos , Valor Predictivo de las Pruebas , Imagen por Resonancia Magnética , Cafeína , Espectroscopía de Resonancia Magnética , Imagen por Resonancia Cinemagnética
3.
Int J Cardiovasc Imaging ; 40(1): 93-105, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37874445

RESUMEN

This study aims to evaluate the accuracy and reliability of the cardiac and respiratory signals extracted from Pilot Tone (PT) in patients clinically referred for cardiovascular MRI. Twenty-three patients were scanned under free-breathing conditions using a balanced steady-state free-precession real-time (RT) cine sequence on a 1.5T scanner. The PT signal was generated by a built-in PT transmitter integrated within the body array coil, and retrospectively processed to extract respiratory and cardiac signals. For comparison, ECG and BioMatrix (BM) respiratory sensor signals were also synchronously recorded. To assess the performances of PT, ECG, and BM, cardiac and respiratory signals extracted from the RT cine images were used as the ground truth. The respiratory motion extracted from PT correlated positively with the image-derived respiratory signal in all cases and showed a stronger correlation (absolute coefficient: 0.95 ± 0.09) than BM (0.72 ± 0.24). For the cardiac signal, PT trigger jitter (standard deviation of PT trigger locations relative to ECG triggers) ranged from 6.6 to 83.3 ms, with a median of 21.8 ms. The mean absolute difference between the PT and corresponding ECG cardiac cycle duration was less than 5% of the average ECG RR interval for 21 out of 23 patients. We did not observe a significant linear dependence (p > 0.28) of PT delay and PT jitter on the patients' BMI or cardiac cycle duration. This study demonstrates the potential of PT to monitor both respiratory and cardiac motion in patients clinically referred for cardiovascular MRI.


Asunto(s)
Técnicas de Imagen Sincronizada Cardíacas , Imagen por Resonancia Cinemagnética , Humanos , Imagen por Resonancia Cinemagnética/métodos , Estudios Retrospectivos , Reproducibilidad de los Resultados , Valor Predictivo de las Pruebas , Imagen por Resonancia Magnética , Movimiento (Física)
4.
Clin Neuroradiol ; 33(4): 1115-1122, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37401949

RESUMEN

PURPOSE: The 3D time-of-flight (TOF) magnetic resonance angiography (MRA) at 3T shows high sensitivity for intracranial aneurysms but is inferior to three-dimensional digital subtraction angiography (3D-DSA) regarding aneurysm characteristics. We applied an ultra-high-resolution (UHR) TOF-MRA using compressed sensing reconstruction to investigate the diagnostic performance in preinterventional evaluation of intracranial aneurysms compared to conventional TOF-MRA and 3D-DSA. METHODS: In this study 17 patients with unruptured intracranial aneurysms were included. Aneurysm dimensions, configuration, image quality and sizing of endovascular devices were compared between conventional TOF-MRA at 3T and UHR-TOF with 3D-DSA as gold standard. Quantitatively, contrast-to-noise ratios (CNR) were compared between TOF-MRAs. RESULTS: On 3D-DSA, 25 aneurysms in 17 patients were detected. On conventional TOF, 23 aneurysms were detected (sensitivity: 92.6%). On UHR-TOF, 25 aneurysms were detected (sensitivity: 100%). Image quality was not significantly different between TOF and UHR-TOF (p = 0.17). Aneurysm dimension measurements were significantly different between conventional TOF (3.89 mm) and 3D-DSA (4.2 mm, p = 0.08) but not between UHR-TOF (4.12 mm) and 3D-DSA (p = 0.19). Irregularities and small vessels at the aneurysm neck were more frequently correctly depicted on UHR-TOF compared to conventional TOF. Comparison of the planned framing coil diameter and flow-diverter (FD) diameter revealed neither a statistically significant difference between TOF and 3D-DSA (coil p = 0.19, FD p = 0.45) nor between UHR-TOF and 3D-DSA (coil: p = 0.53, FD 0.33). The CNR was significantly higher in conventional TOF (p = 0.009). CONCLUSION: In this pilot study, ultra-high-resolution TOF-MRA visualized all aneurysms and accurately depicted aneurysm irregularities and vessels at the base of the aneurysm comparably to DSA, outperforming conventional TOF. UHR-TOF with compressed sensing reconstruction seems to represent a non-invasive alternative to pre-interventional DSA for intracranial aneurysms.


Asunto(s)
Embolización Terapéutica , Aneurisma Intracraneal , Humanos , Aneurisma Intracraneal/patología , Estudios de Seguimiento , Proyectos Piloto , Angiografía por Resonancia Magnética/métodos , Angiografía de Substracción Digital/métodos , Sensibilidad y Especificidad
5.
Res Sq ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37461505

RESUMEN

Background: The electrocardiogram (ECG) signal is prone to distortions from gradient and radiofrequency interference and the magnetohydrodynamic effect during cardiovascular magnetic resonance imaging (CMR). Although Pilot Tone Cardiac (PTC) triggering has the potential to overcome these limitations, effectiveness across various CMR techniques has yet to be established. Purpose: To evaluate the performance of PTC triggering in a comprehensive CMR exam. Methods: Fifteen volunteers and twenty patients were recruited at two centers. ECG triggered images were collected for comparison in a subset of sequences. The PTC trigger accuracy was evaluated against ECG in cine acquisitions. Two experienced readers scored image quality in PTC-triggered cine, late gadolinium enhancement (LGE), and T1- and T2-weighted dark-blood turbo spin echo (DB-TSE) images. Quantitative cardiac function, flow, and parametric mapping values obtained using PTC and ECG triggered sequences were compared. Results: Breath-held segmented cine used for trigger timing analysis was collected in 15 volunteers and 14 patients. PTC calibration failed in three volunteers and one patient; ECG trigger recording failed in one patient. Out of 1987 total heartbeats, three mismatched trigger PTC-ECG pairs were found. Image quality scores showed no significant difference between PTC and ECG triggering. There was no significant difference found in quantitative measurements in volunteers. In patients, the only significant difference was found in post-contrast T1 (p = 0.04). ICC showed moderate to excellent agreement in all measurements. Conclusion: PTC performance was equivalent to ECG in terms of triggering consistency, image quality, and quantitative image measurements across multiple CMR applications.

6.
Magn Reson Med ; 90(3): 922-938, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37103471

RESUMEN

PURPOSE: To develop a free-running 3D radial whole-heart multiecho gradient echo (ME-GRE) framework for cardiac- and respiratory-motion-resolved fat fraction (FF) quantification. METHODS: (NTE = 8) readouts optimized for water-fat separation and quantification were integrated within a continuous non-electrocardiogram-triggered free-breathing 3D radial GRE acquisition. Motion resolution was achieved with pilot tone (PT) navigation, and the extracted cardiac and respiratory signals were compared to those obtained with self-gating (SG). After extra-dimensional golden-angle radial sparse parallel-based image reconstruction, FF, R2 *, and B0 maps, as well as fat and water images were generated with a maximum-likelihood fitting algorithm. The framework was tested in a fat-water phantom and in 10 healthy volunteers at 1.5 T using NTE = 4 and NTE = 8 echoes. The separated images and maps were compared with a standard free-breathing electrocardiogram (ECG)-triggered acquisition. RESULTS: The method was validated in vivo, and physiological motion was resolved over all collected echoes. Across volunteers, PT provided respiratory and cardiac signals in agreement (r = 0.91 and r = 0.72) with SG of the first echo, and a higher correlation to the ECG (0.1% of missed triggers for PT vs. 5.9% for SG). The framework enabled pericardial fat imaging and quantification throughout the cardiac cycle, revealing a decrease in FF at end-systole by 11.4% ± 3.1% across volunteers (p < 0.0001). Motion-resolved end-diastolic 3D FF maps showed good correlation with ECG-triggered measurements (FF bias of -1.06%). A significant difference in free-running FF measured with NTE = 4 and NTE = 8 was found (p < 0.0001 in sub-cutaneous fat and p < 0.01 in pericardial fat). CONCLUSION: Free-running fat fraction mapping was validated at 1.5 T, enabling ME-GRE-based fat quantification with NTE = 8 echoes in 6:15 min.


Asunto(s)
Corazón , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Corazón/diagnóstico por imagen , Electrocardiografía , Procesamiento de Imagen Asistido por Computador/métodos , Respiración , Imagenología Tridimensional/métodos
7.
Magn Reson Med ; 90(1): 222-230, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36864561

RESUMEN

PURPOSE: To investigate the feasibility of combining simultaneous multislice (SMS) and region-optimized virtual coils (ROVir) for single breath-hold CINE imaging. METHOD: ROVir is a recent virtual coil approach that allows reduced-field of view (FOV) imaging by localizing the signal from a region-of-interest (ROI) and/or suppressing the signal from unwanted spatial regions. In this work, ROVir is used for reduced-FOV SMS bSSFP CINE imaging, which enables whole heart CINE with a single breath-hold acquisition. RESULTS: Reduced-FOV CINE with either SMS-only or ROVir-only resulted in significant aliasing, with severely reduced image quality when compared to the full FOV reference CINE, while the visual appearance of aliasing was substantially reduced with the proposed SMS+ROVir. The end diastolic volume, end systolic volume, and ejection fraction obtained using the proposed approach were similar to the clinical reference (correlations of 0.92, 0.94, and 0.88, respectively with p < 0 . 05 $$ p<0.05 $$ in each case, and biases of 0.1, 1.6 mL, and - 0 . 6 % $$ -0.6\% $$ , respectively). No statistically significant differences for these parameters were found with a Wilcoxon rank test (p = 0.96, 0.20, and 0.40, respectively). CONCLUSION: We demonstrated that reduced-FOV CINE imaging with SMS+ROVir enables single breath-hold whole-heart imaging without compromising visual image quality or quantitative cardiac function parameters.


Asunto(s)
Contencion de la Respiración , Imagen por Resonancia Cinemagnética , Imagen por Resonancia Cinemagnética/métodos , Reproducibilidad de los Resultados , Interpretación de Imagen Asistida por Computador/métodos
8.
Phys Med Biol ; 68(5)2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36763999

RESUMEN

Objective.T1 mapping of the liver is time consuming and can be challenging due to respiratory motion. Here we present a prospective slice tracking approach, which utilizes an external ultra-wide band radar signal and allows for efficient T1 mapping during free-breathing.Approach.The fast radar signal is calibrated to an MR-based motion signal to create a motion model. This motion model provides motion estimates, which are used to carry out slice tracking for any subsequent clinical scan. This approach was evaluated in simulations, phantom experiments andin vivoscans.Main results.Radar-based slice tracking was implemented on an MR system with a total latency of 77 ms. Moving phantom experiments showed accurate motion prediction with an error of 0.12 mm in anterior-posterior and 0.81 mm in head-feet direction. The model error remained stable for up to two hours.In vivoexperiments showed visible image improvement with a motion model error three times smaller than with a respiratory bellow. For T1 mapping during free-breathing the proposed approach provided similar results compared to reference T1 mapping during a breathhold.Significance.The proposed radar-based approach achieves accurate slice tracking and enables efficient T1 mapping of the liver during free-breathing. This motion correction approach is independent from scanning parameters and could also be used for applications like MR guided radiotherapy or MR Elastography.


Asunto(s)
Imagen por Resonancia Magnética , Radar , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Hígado/diagnóstico por imagen , Respiración , Fantasmas de Imagen
9.
Invest Radiol ; 58(6): 413-419, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719974

RESUMEN

OBJECTIVES: Three-dimensional (3D) magnetic resonance elastography (MRE) measures liver fibrosis and inflammation but requires several breath-holds that hamper clinical acceptance. The aim of this study was to evaluate the technical and clinical feasibility of a single breath-hold 3D MRE sequence as a means of measuring liver fibrosis and inflammation in obese patients. METHODS: From November 2020 to December 2021, subjects were prospectively enrolled and divided into 2 groups. Group 1 included healthy volunteers (n = 10) who served as controls to compare the single breath-hold 3D MRE sequence with a multiple-breath-hold 3D MRE sequence. Group 2 included liver patients (n = 10) who served as participants to evaluate the clinical feasibility of the single breath-hold 3D MRE sequence in measuring liver fibrosis and inflammation. Controls and participants were scanned at 60 Hz mechanical excitation with the single breath-hold 3D MRE sequence to retrieve the magnitude of the complex-valued shear modulus (|G*| [kPa]), the shear wave speed (Cs [m/s]), and the loss modulus (G" [kPa]). The controls were also scanned with a multiple-breath-hold 3D MRE sequence for comparison, and the participants had histopathology (Ishak scores) for correlation with Cs and G". RESULTS: For the 10 controls, 5 were female, and the mean age and body mass index were 33.1 ± 9.5 years and 23.0 ± 2.1 kg/m 2 , respectively. For the 10 participants, 8 were female, and the mean age and body mass index were 45.1 ± 16.5 years and 33.1 ± 4.0 kg/m 2 (obese range), respectively. All participants were suspected of having nonalcoholic fatty liver disease. Bland-Altman analysis of the comparison in controls shows there are nonsignificant differences in |G*|, Cs, and G" below 6.5%, suggesting good consensus between the 2 sequences. For the participants, Cs and G" correlated significantly with Ishak fibrosis and inflammation grades, respectively ( ρ = 0.95, P < 0.001, and ρ = 0.84, P = 0.002). CONCLUSION: The single breath-hold 3D MRE sequence may be effective in measuring liver fibrosis and inflammation in obese patients.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Humanos , Femenino , Masculino , Diagnóstico por Imagen de Elasticidad/métodos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/patología , Hígado/diagnóstico por imagen , Hígado/patología , Inflamación/diagnóstico por imagen , Inflamación/patología , Obesidad/complicaciones , Obesidad/patología
10.
MAGMA ; 36(1): 135-150, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35921020

RESUMEN

OBJECTIVE: To provide respiratory motion correction for free-breathing myocardial T1 mapping using a pilot tone (PT) and a continuous golden-angle radial acquisition. MATERIALS AND METHODS: During a 45 s prescan the PT is acquired together with a dynamic sagittal image covering multiple respiratory cycles. From these images, the respiratory heart motion in head-feet and anterior-posterior direction is estimated and two linear models are derived between the PT and heart motion. In the following scan through-plane motion is corrected prospectively with slice tracking based on the PT. In-plane motion is corrected for retrospectively. Our method was evaluated on a motion phantom and 11 healthy subjects. RESULTS: Non-motion corrected measurements using a moving phantom showed T1 errors of 14 ± 4% (p < 0.05) compared to a reference measurement. The proposed motion correction approach reduced this error to 3 ± 4% (p < 0.05). In vivo the respiratory motion led to an overestimation of T1 values by 26 ± 31% compared to breathhold T1 maps, which was successfully corrected to an average difference of 3 ± 2% (p < 0.05) between our free-breathing approach and breathhold data. DISCUSSION: Our proposed PT-based motion correction approach allows for T1 mapping during free-breathing with the same accuracy as a corresponding breathhold T1 mapping scan.


Asunto(s)
Imagen por Resonancia Magnética , Miocardio , Humanos , Estudios Retrospectivos , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Respiración
11.
Invest Radiol ; 58(3): 239-243, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36070525

RESUMEN

OBJECTIVE: The aim of this study was to test the hypothesis that there are good agreements between cardiac functional and structural indices derived from magnetic resonance imaging (MRI) sequences triggered with pilot tone (PT) and electrocardiogram (ECG). MATERIALS AND METHODS: Sixteen healthy volunteers (11 male, age 21-76 years) underwent a cardiac MRI scan. Cine MRI, T1, and T2 mapping were acquired by using PT and ECG triggering. Quantitative measurements, including left and right ventricular end-diastolic volume, end-systolic volume, stroke volume, ejection fraction, longitudinal strain, left ventricular T1 and T2 values, left and right atrial longitudinal strain, and maximal/minimal volumes, were measured. The interclass correlation coefficient, coefficient of variation, and Bland-Altman plots were used to evaluate the agreements between measurements derived by MRI sequences triggered with 2 methods. RESULTS: There were no significant differences among end-diastolic volume, end-systolic volume, stroke volume, ejection fraction, left ventricle mass, T1 and T2 values, or longitudinal strains acquired using PT and ECG. There were good agreements and low variations between the levels of these indices acquired with PT and ECG. Interclass correlation coefficients mainly ranged from 0.73 to 0.98. The coefficients of variation ranged from 1.4% to 22.6%. CONCLUSIONS: Pilot tone-triggered MRI provides comparable measurements of cardiac function, motion, and structure as ECG-triggered MRI. Pilot tone has the potential to become a backup of ECG gating in cardiovascular imaging.


Asunto(s)
Imagen por Resonancia Cinemagnética , Imagen por Resonancia Magnética , Humanos , Masculino , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Cinemagnética/métodos , Volumen Sistólico , Corazón/diagnóstico por imagen
13.
Tomography ; 8(3): 1608-1617, 2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35736881

RESUMEN

The aim of our study was to compare compressed sensing (CS) time-of-flight (TOF) magnetic resonance angiography (MRA) with parallel imaging (PI) TOF MRA in the evaluation of patients with intracranial aneurysms treated with coil embolization or stent-assisted coiling. We enrolled 22 patients who underwent follow-up imaging after intracranial aneurysm coil embolization. All patients underwent both PI TOF and CS TOF MRA during the same examination. Image evaluation aimed to compare the performance of CS to PI TOF MRA in determining the degree of aneurysm occlusion, as well as the depiction of parent vessel and vessels adjacent to the aneurysm dome. The reference standard for the evaluation of aneurysm occlusion was PI TOF MRA. The inter-modality agreement between CS and PI TOF MRA in the evaluation of aneurysm occlusion was almost perfect (κ = 0.98, p < 0.001) and the overall inter-rater agreement was substantial (κ = 0.70, p < 0.001). The visualization of aneurysm parent vessel in CS TOF images compared with PI TOF images was evaluated to be better in 11.4%, equal in 86.4%, and worse in 2.3%. CS TOF MRA, with almost 70% scan time reduction with respect to PI TOF MRA, yields comparable results for assessing the occlusion status of coiled intracranial aneurysms. Short scan times increase patient comfort, reduce the risk of motion artifacts, and increase patient throughput, with a resulting reduction in costs. CS TOF MRA may therefore be a potential replacement for PI TOF MRA as a first-line follow-up examination in patients with intracranial aneurysms treated with coil embolization.


Asunto(s)
Embolización Terapéutica , Aneurisma Intracraneal , Angiografía de Substracción Digital/métodos , Embolización Terapéutica/métodos , Estudios de Seguimiento , Humanos , Aneurisma Intracraneal/diagnóstico por imagen , Aneurisma Intracraneal/terapia , Angiografía por Resonancia Magnética/métodos
14.
Eur J Radiol ; 151: 110286, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35452953

RESUMEN

PURPOSE: Simultaneous multi-slice (SMS) balanced steady-state free precession (bSSFP) acquisition and iterative reconstruction can provide high spatial resolution and coverage for cardiac magnetic resonance (CMR) perfusion. However, respiratory motion remains a challenge for iterative reconstruction techniques employing temporal regularisation. The aim of this study is to evaluate an iterative reconstruction with integrated motion compensation for SMS-bSSFP first-pass myocardial stress perfusion in the presence of respiratory motion. METHODS: Thirty-one patients with suspected coronary artery disease were prospectively recruited and imaged at 1.5 T. A SMS-bSSFP prototype myocardial perfusion sequence was acquired at stress in all patients. All datasets were reconstructed using an iterative reconstruction with temporal regularisation, once with and once without motion compensation (MC and NMC, respectively). Three readers scored each dataset in terms of: image quality (1:poor; 4:excellent), motion/blurring (1:severe motion/blurring; 3:no motion/blurring), and diagnostic confidence (1:poor confidence; 3:high confidence). Quantitative assessment of sharpness was performed. The number of uncorrupted first-pass dynamics was measured on the NMC datasets to classify patients into 'suboptimal breath-hold (BH)' and 'good BH' groups. RESULTS: Compared across all cases, MC performed better than NMC in terms of image quality (3.5 ± 0.5 vs. 3.0 ± 0.8, P = 0.002), motion/blurring (2.9 ± 0.1 vs. 2.2 ± 0.8, P < 0.001), diagnostic confidence (2.9 ± 0.1 vs. 2.3 ± 0.7, P < 0.001) and sharpness index (0.34 ± 0.05 vs. 0.31 ± 0.06, P < 0.001). Fourteen patients with a suboptimal BH were identified. For the suboptimal BH group, MC performed better than NMC in terms of image quality (3.8 ± 0.4 vs. 2.6 ± 0.8, P < 0.001), motion/blurring (3.0 ± 0.1 vs. 1.6 ± 0.7, P < 0.001), diagnostic confidence (3.0 ± 0.1 vs. 1.9 ± 0.7, P < 0.001) and sharpness index (0.34 ± 0.05 vs. 0.30 ± 0.06, P = 0.004). For the good BH group, sharpness index was higher for MC than NMC (0.34 ± 0.06 vs 0.31 ± 0.07, P = 0.03), while there were no significant differences observed for the other three metrics assessed (P > 0.11). There were no significant differences between suboptimal BH MC and good BH MC for any of the reported metrics (P > 0.06). CONCLUSIONS: Integrated motion compensation significantly reduces motion/blurring and improves image quality, diagnostic confidence and sharpness index of SMS-bSSFP perfusion with iterative reconstruction in the presence of motion.


Asunto(s)
Contencion de la Respiración , Imagen por Resonancia Magnética , Corazón , Humanos , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Perfusión
15.
BMC Med Imaging ; 22(1): 64, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35387607

RESUMEN

BACKGROUND: To evaluate the utility of high-resolution compressed sensing time-of-fight MR angiography (CS TOF-MRA) for assessing patients with moyamoya disease (MMD) after surgical revascularization, by comparison with computer tomography angiography (CTA). METHODS: Twenty patients with MMD after surgical revascularizations who underwent CS TOF-MRA and CTA were collected. The scan time of CS TOF-MRA was 5 min and 4 s, with a reconstructed resolution of 0.4 × 0.4 × 0.4 mm3. Visualization of superficial temporal artery and middle cerebral artery (STA-MCA) bypass, neovascularization into the brain pial surface and Moyamoya vessels (MMVs) were independently ranked by two neuroradiologists on CS TOF-MRA and CTA, respectively. The patency of anastomosis was assessed as patent or occluded, using digital subtraction angiography and expert's consensus as ground truth. Interobserver agreement was calculated using the weighted kappa statistic. Wilcoxon signed-rank or Chi-square test was performed to investigate diagnostic difference between CS TOF-MRA and CTA. RESULTS: Twenty-two hemispheres from 20 patients were analyzed. The inter-reader agreement for evaluating STA-MCA bypass, neovascularization and anastomosis patency was good to excellent (κCS TOF-MRA, 0.738-1.000; κCTA, 0.743-0.909). The STA-MCA bypass and MMVs were better visualized on CS TOF-MRA than CTA (both P < 0.05). CS TOF-MRA had a higher sensitivity than CTA (94.7% vs. 73.7%) for visualizing anastomoses. Neovascularization was better observed in 13 (59.1%) sides on CS TOF-MRA, in comparison to 7 (31.8%) sides on CTA images (P = 0.005). CONCLUSION: High-resolution CS TOF-MRA outperforms CTA for visualization of STA-MCA bypass, neovascularization and MMVs within a clinically reasonable time in MMD patients after revascularization.


Asunto(s)
Enfermedad de Moyamoya , Angiografía de Substracción Digital/métodos , Angiografía por Tomografía Computarizada , Humanos , Angiografía por Resonancia Magnética/métodos , Enfermedad de Moyamoya/diagnóstico por imagen , Enfermedad de Moyamoya/cirugía
16.
Magn Reson Med ; 88(2): 663-675, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35344593

RESUMEN

PURPOSE: To implement and evaluate a simultaneous multi-slice balanced SSFP (SMS-bSSFP) perfusion sequence and compressed sensing reconstruction for cardiac MR perfusion imaging with full left ventricular (LV) coverage (nine slices/heartbeat) and high spatial resolution (1.4 × 1.4 mm2 ) at 1.5T. METHODS: A preliminary study was performed to evaluate the performance of blipped controlled aliasing in parallel imaging (CAIPI) and RF-CAIPI with gradient-controlled local Larmor adjustment (GC-LOLA) in the presence of fat. A nine-slice SMS-bSSFP sequence using RF-CAIPI with GC-LOLA with high spatial resolution (1.4 × 1.4 mm2 ) and a conventional three-slice sequence with conventional spatial resolution (1.9 × 1.9 mm2 ) were then acquired in 10 patients under rest conditions. Qualitative assessment was performed to assess image quality and perceived signal-to-noise ratio (SNR) on a 4-point scale (0: poor image quality/low SNR; 3: excellent image quality/high SNR), and the number of myocardial segments with diagnostic image quality was recorded. Quantitative measurements of myocardial sharpness and upslope index were performed. RESULTS: Fat signal leakage was significantly higher for blipped CAIPI than for RF-CAIPI with GC-LOLA (7.9% vs. 1.2%, p = 0.010). All 10 SMS-bSSFP perfusion datasets resulted in 16/16 diagnostic myocardial segments. There were no significant differences between the SMS and conventional acquisitions in terms of image quality (2.6 ± 0.6 vs. 2.7 ± 0.2, p = 0.8) or perceived SNR (2.8 ± 0.3 vs. 2.7 ± 0.3, p = 0.3). Inter-reader variability was good for both image quality (ICC = 0.84) and perceived SNR (ICC = 0.70). Myocardial sharpness was improved using the SMS sequence compared to the conventional sequence (0.37 ± 0.08 vs 0.32 ± 0.05, p < 0.001). There was no significant difference between measurements of upslope index for the SMS and conventional sequences (0.11 ± 0.04 vs. 0.11 ± 0.03, p = 0.84). CONCLUSION: SMS-bSSFP with multiband factor 3 and compressed sensing reconstruction enables cardiac MR perfusion imaging with three-fold increased spatial coverage and improved myocardial sharpness compared to a conventional sequence, without compromising perceived SNR, image quality, upslope index or number of diagnostic segments.


Asunto(s)
Aumento de la Imagen , Interpretación de Imagen Asistida por Computador , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Perfusión , Reproducibilidad de los Resultados
17.
Magn Reson Med ; 87(2): 718-732, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34611923

RESUMEN

PURPOSE: In this work, we integrated the pilot tone (PT) navigation system into a reconstruction framework for respiratory and cardiac motion-resolved 5D flow. We tested the hypotheses that PT would provide equivalent respiratory curves, cardiac triggers, and corresponding flow measurements to a previously established self-gating (SG) technique while being independent from changes to the acquisition parameters. METHODS: Fifteen volunteers and 9 patients were scanned with a free-running 5D flow sequence, with PT integrated. Respiratory curves and cardiac triggers from PT and SG were compared across all subjects. Flow measurements from 5D flow reconstructions using both PT and SG were compared to each other and to a reference electrocardiogram-gated and respiratory triggered 4D flow acquisition. Radial trajectories with variable readouts per interleave were also tested in 1 subject to compare cardiac trigger quality between PT and SG. RESULTS: The correlation between PT and SG respiratory curves were 0.95 ± 0.06 for volunteers and 0.95 ± 0.04 for patients. Heartbeat duration measurements in volunteers and patients showed a bias to electrocardiogram measurements of, respectively, 0.16 ± 64.94 ms and 0.01 ± 39.29 ms for PT versus electrocardiogram and of 0.24 ± 63.68 ms and 0.09 ± 32.79 ms for SG versus electrocardiogram. No significant differences were reported for the flow measurements between 5D flow PT and from 5D flow SG. A decrease in the cardiac triggering quality of SG was observed for increasing readouts per interleave, whereas PT quality remained constant. CONCLUSION: PT has been successfully integrated in 5D flow MRI and has shown equivalent results to the previously described 5D flow SG technique, while being completely acquisition-independent.


Asunto(s)
Corazón , Imagen por Resonancia Magnética , Electrocardiografía , Corazón/diagnóstico por imagen , Humanos , Movimiento (Física) , Respiración , Frecuencia Respiratoria
18.
Magn Reson Imaging ; 82: 74-90, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34157408

RESUMEN

Magnetic Resonance Fingerprinting (MRF) reconstructs tissue maps based on a sequence of very highly undersampled images. In order to be able to perform MRF reconstruction, state-of-the-art MRF methods rely on priors such as the MR physics (Bloch equations) and might also use some additional low-rank or spatial regularization. However to our knowledge these three regularizations are not applied together in a joint reconstruction. The reason is that it is indeed challenging to incorporate effectively multiple regularizations in a single MRF optimization algorithm. As a result most of these methods are not robust to noise especially when the sequence length is short. In this paper, we propose a family of new methods where spatial and low-rank regularizations, in addition to the Bloch manifold regularization, are applied on the images. We show on digital phantom and NIST phantom scans, as well as volunteer scans that the proposed methods bring significant improvement in the quality of the estimated tissue maps.


Asunto(s)
Encéfalo , Procesamiento de Imagen Asistido por Computador , Algoritmos , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Fantasmas de Imagen
19.
Magn Reson Med ; 86(2): 663-676, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33749026

RESUMEN

PURPOSE: To enable all-systolic first-pass rest myocardial perfusion with long saturation times. To investigate the change in perfusion contrast and dark rim artefacts through simulations and surrogate measurements. METHODS: Simulations were employed to investigate optimal saturation time for myocardium-perfusion defect contrast and blood-to-myocardium signal ratios. Two saturation recovery blocks with long/short saturation times (LTS/STS) were employed to image 3 slices at end-systole and diastole. Simultaneous multi-slice balanced steady state free precession imaging and compressed sensing acceleration were combined. The sequence was compared to a 3 slice-by-slice clinical protocol in 10 patients. Quantitative assessment of myocardium-peak pre contrast and blood-to-myocardium signal ratios, as well as qualitative assessment of perceived SNR, image quality, blurring, and dark rim artefacts, were performed. RESULTS: Simulations showed that with a bolus of 0.075 mmol/kg, a LTS of 240-470 ms led to a relative increase in myocardium-perfusion defect contrast of 34% ± 9%-28% ± 27% than a STS = 120 ms, while reducing blood-to-myocardium signal ratio by 18% ± 10%-32% ± 14% at peak myocardium. With a bolus of 0.05 mmol/kg, LTS was 320-570 ms with an increase in myocardium-perfusion defect contrast of 63% ± 13%-62% ± 29%. Across patients, LTS led to an average increase in myocardium-peak pre contrast of 59% (P < .001) at peak myocardium and a lower blood-to-myocardium signal ratio of 47% (P < .001) and 15% (P < .001) at peak blood/myocardium. LTS had improved motion robustness (P = .002), image quality (P < .001), and decreased dark rim artefacts (P = .008) than the clinical protocol. CONCLUSION: All-systolic rest perfusion can be achieved by combining simultaneous multi-slice and compressed sensing acceleration, enabling 3-slice cardiac coverage with reduced motion and dark rim artefacts. Numerical simulations indicate that myocardium-perfusion defect contrast increases at LTS.


Asunto(s)
Imagen por Resonancia Magnética , Imagen de Perfusión Miocárdica , Aceleración , Medios de Contraste , Corazón/diagnóstico por imagen , Humanos , Perfusión , Sístole
20.
Magn Reson Med ; 85(5): 2403-2416, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33226699

RESUMEN

PURPOSE: To evaluate prospective motion correction using the pilot tone (PT) as a quantitative respiratory motion signal with high temporal resolution for cardiac cine images during free breathing. METHODS: Before cine data acquisition, a short prescan was performed, calibrating the PT to the respiratory-induced heart motion using respiratory-resolved real-time images. The calibrated PT was then applied for nearly real-time prospective motion correction of cine MRI through slice tracking (ie, updating the slice position before every readout). Additionally, in-plane motion correction was performed retrospectively also based on the calibrated PT data. The proposed method was evaluated in a moving phantom and 10 healthy volunteers. RESULTS: The PT showed very good correlation to the phantom motion. In volunteer studies using a long-term scan over 7.96 ± 1.40 min, the mean absolute error between registered and predicted motion from the PT was 1.44 ± 0.46 mm in head-feet and 0.46 ± 0.07 mm in anterior-posterior direction. Irregular breathing could also be corrected well with the PT. The PT motion correction leads to a significant improvement of contrast-to-noise ratio by 68% (P ≤ .01) between blood pool and myocardium and sharpness of endocardium by 24% (P = .04) in comparison to uncorrected data. The image score, which refers to the cine image quality, has improved with the utilization of the proposed PT motion correction. CONCLUSION: The proposed approach provides respiratory motion-corrected cine images of the heart with improved image quality and a high scan efficiency using the PT. The PT is independent of the MR acquisition, making this a very flexible motion-correction approach.


Asunto(s)
Corazón , Imagen por Resonancia Cinemagnética , Corazón/diagnóstico por imagen , Humanos , Movimiento (Física) , Estudios Prospectivos , Reproducibilidad de los Resultados , Respiración , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...