Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 19863, 2024 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191834

RESUMEN

The significant advances in the differentiation of human pluripotent stem (hPS) cells into pancreatic endocrine cells, including functional ß-cells, have been based on a detailed understanding of the underlying developmental mechanisms. However, the final differentiation steps, leading from endocrine progenitors to mono-hormonal and mature pancreatic endocrine cells, remain to be fully understood and this is reflected in the remaining shortcomings of the hPS cell-derived islet cells (SC-islet cells), which include a lack of ß-cell maturation and variability among different cell lines. Additional signals and modifications of the final differentiation steps will have to be assessed in a combinatorial manner to address the remaining issues and appropriate reporter lines would be useful in this undertaking. Here we report the generation and functional validation of hPS cell reporter lines that can monitor the generation of INS+ and GCG+ cells and their resolution into mono-hormonal cells (INSeGFP, INSeGFP/GCGmCHERRY) as well as ß-cell maturation (INSeGFP/MAFAmCHERRY) and function (INSGCaMP6). The reporter hPS cell lines maintained strong and widespread expression of pluripotency markers and differentiated efficiently into definitive endoderm and pancreatic progenitor (PP) cells. PP cells from all lines differentiated efficiently into islet cell clusters that robustly expressed the corresponding reporters and contained glucose-responsive, insulin-producing cells. To demonstrate the applicability of these hPS cell reporter lines in a high-content live imaging approach for the identification of optimal differentiation conditions, we adapted our differentiation procedure to generate SC-islet clusters in microwells. This allowed the live confocal imaging of multiple SC-islets for a single condition and, using this approach, we found that the use of the N21 supplement in the last stage of the differentiation increased the number of monohormonal ß-cells without affecting the number of α-cells in the SC-islets. The hPS cell reporter lines and the high-content live imaging approach described here will enable the efficient assessment of multiple conditions for the optimal differentiation and maturation of SC-islets.


Asunto(s)
Diferenciación Celular , Genes Reporteros , Células Secretoras de Insulina , Islotes Pancreáticos , Células Madre Pluripotentes , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Línea Celular , Insulina/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética
2.
Nat Metab ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169271

RESUMEN

Insulin-producing ß-cells in pancreatic islets are regulated by systemic cues and, locally, by adjacent islet hormone-producing 'non-ß-cells' (namely α-cells, δ-cells and γ-cells). Yet whether the non-ß-cells are required for accurate insulin secretion is unclear. Here, we studied mice in which adult islets are exclusively composed of ß-cells and human pseudoislets containing only primary ß-cells. Mice lacking non-ß-cells had optimal blood glucose regulation, enhanced glucose tolerance, insulin sensitivity and restricted body weight gain under a high-fat diet. The insulin secretion dynamics in islets composed of only ß-cells was comparable to that in intact islets. Similarly, human ß-cell pseudoislets retained the glucose-regulated mitochondrial respiration, insulin secretion and exendin-4 responses of entire islets. The findings indicate that non-ß-cells are dispensable for blood glucose homeostasis and ß-cell function. These results support efforts aimed at developing diabetes treatments by generating ß-like clusters devoid of non-ß-cells, such as from pluripotent stem cells differentiated in vitro or by reprograming non-ß-cells into insulin producers in situ.

3.
Cell Rep ; 43(6): 114346, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38850534

RESUMEN

Histopathological heterogeneity in the human pancreas is well documented; however, functional evidence at the tissue level is scarce. Herein, we investigate in situ glucose-stimulated islet and carbachol-stimulated acinar cell secretion across the pancreas head (PH), body (PB), and tail (PT) regions in donors without diabetes (ND; n = 15), positive for one islet autoantibody (1AAb+; n = 7), and with type 1 diabetes (T1D; <14 months duration, n = 5). Insulin, glucagon, pancreatic amylase, lipase, and trypsinogen secretion along with 3D tissue morphometrical features are comparable across regions in ND. In T1D, insulin secretion and beta-cell volume are significantly reduced within all regions, while glucagon and enzymes are unaltered. Beta-cell volume is lower despite normal insulin secretion in 1AAb+, resulting in increased volume-adjusted insulin secretion versus ND. Islet and acinar cell secretion in 1AAb+ are consistent across the PH, PB, and PT. This study supports low inter-regional variation in pancreas slice function and, potentially, increased metabolic demand in 1AAb+.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulina , Islotes Pancreáticos , Humanos , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Masculino , Insulina/metabolismo , Femenino , Secreción de Insulina/efectos de los fármacos , Adulto , Persona de Mediana Edad , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Células Acinares/metabolismo , Células Acinares/patología , Glucagón/metabolismo , Glucosa/metabolismo , Autoanticuerpos/inmunología , Amilasas/metabolismo
4.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405840

RESUMEN

Histopathological heterogeneity in human pancreas has been well documented; however, functional evidence at the tissue level is scarce. Herein we investigated in situ glucose-stimulated islet and carbachol-stimulated acinar cell secretion across the pancreas head (PH), body (PB), and tail (PT) regions in no diabetes (ND, n=15), single islet autoantibody-positive (1AAb+, n=7), and type 1 diabetes donors (T1D, <14 months duration, n=5). Insulin, glucagon, pancreatic amylase, lipase, and trypsinogen secretion along with 3D tissue morphometrical features were comparable across the regions in ND. In T1D, insulin secretion and beta-cell volume were significantly reduced within all regions, while glucagon and enzymes were unaltered. Beta-cell volume was lower despite normal insulin secretion in 1AAb+, resulting in increased volume-adjusted insulin secretion versus ND. Islet and acinar cell secretion in 1AAb+ were consistent across PH, PB and PT. This study supports low inter-regional variation in pancreas slice function and potentially, increased metabolic demand in 1AAb+.

5.
Exp Cell Res ; 434(1): 113868, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043722

RESUMEN

OBJECTIVE: A wide range of cardiac diseases is associated with inflammation. "Inflamed" heart tissue is infiltrated with pro-inflammatory macrophages which extensively secrete matrix metalloproteinase 9 (MMP9), a regulator of extracellular matrix turnover. As MMP9 is released from macrophages in a latent form, it requires activation. The present study addresses the role of cardiomyocytes in the course of this activation process. METHODS AND RESULTS: In mono- and co-cultures of pro-inflammatory rat macrophages (bone marrow-derived and peritoneal) and cardiomyocytes (H9C2 cell line) gelatin zymography demonstrated that activated macrophages robustly secreted latent pro-MMP9, whereas cardiomyocytes could not produce the enzyme. Co-culturing of the two cell species was critical for pro-MMP9 activation and was also accompanied by processing of cardiomyocyte-secreted pro-MMP2. A cascade of pro-MMP9 activation was initiated on macrophage membrane with pro-MMP2 cleavage. Namely, pro-inflammatory macrophages expressed an active membrane type 1 MMP (MT1MMP), which activated pro-MMP2, which in turn converted pro-MMP9. Downregulation of MT1MMP in macrophages by siRNA abolished activation of both pro-MMP2 and pro-MMP9 in co-culture. In addition, both cell species secreted MMP13 as a further pro-MMP9 activator. In co-culture, activation of pro-MMP13 occurred on membranes of macrophages and was enhanced in presence of active MMP2. Using incubations with recombinant MMPs and isolated macrophage membranes, we demonstrated that while both MMP2 and MMP13 individually had the ability to activate pro-MMP9, their combined action provided a synergistic effect. CONCLUSION: Activation of pro-MMP9 in a co-culture of pro-inflammatory macrophages and cardiomyocytes was the result of a complex interaction of several MMPs on the cell membrane and in the extracellular space. Both cell types contributed critically to pro-MMP9 processing.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Animales , Ratas , Células Cultivadas , Técnicas de Cocultivo , Macrófagos/metabolismo , Metaloproteinasa 13 de la Matriz , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Miocitos Cardíacos/metabolismo
6.
Diabetes ; 73(1): 11-22, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38117999

RESUMEN

Over the last two decades, increased availability of human pancreatic tissues has allowed for major expansions in our understanding of islet biology in health and disease. Indeed, studies of fixed and frozen pancreatic tissues, as well as efforts using viable isolated islets obtained from organ donors, have provided significant insights toward our understanding of diabetes. However, the procedures associated with islet isolation result in distressed cells that have been removed from any surrounding influence. The pancreas tissue slice technology was developed as an in situ approach to overcome certain limitations associated with studies on isolated islets or fixed tissue. In this Perspective, we discuss the value of this novel platform and review how pancreas tissue slices, within a short time, have been integrated in numerous studies of rodent and human islet research. We show that pancreas tissue slices allow for investigations in a less perturbed organ tissue environment, ranging from cellular processes, over peri-islet modulations, to tissue interactions. Finally, we discuss the considerations and limitations of this technology in its future applications. We believe the pancreas tissue slices will help bridge the gap between studies on isolated islets and cells to the systemic conditions by providing new insight into physiological and pathophysiological processes at the organ level. ARTICLE HIGHLIGHTS: Human pancreas tissue slices represent a novel platform to study human islet biology in close to physiological conditions. Complementary to established technologies, such as isolated islets, single cells, and histological sections, pancreas tissue slices help bridge our understanding of islet physiology and pathophysiology from single cell to intact organ. Diverse sources of viable human pancreas tissue, each with distinct characteristics to be considered, are available to use in tissue slices for the study of diabetes pathogenesis.


Asunto(s)
Diabetes Mellitus , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Humanos , Páncreas , Donantes de Tejidos
7.
Antioxidants (Basel) ; 12(2)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36829839

RESUMEN

As a major cause of morbidity and mortality globally, hypertension remains a serious threat to global public health. Despite the availability of many antihypertensive medications, several hypertensive individuals are resistant to standard treatments, and are unable to control their blood pressure. Regulation of the renin-angiotensin-aldosterone system (RAAS) controlling blood pressure, activation of the immune system triggering inflammation and production of reactive oxygen species, leading to oxidative stress and redox-sensitive signaling, have been implicated in the pathogenesis of hypertension. Thus, besides standard antihypertensive medications, which lower arterial pressure, antioxidant medications were tested to improve antihypertensive treatment. We review and discuss the role of oxidative stress in the pathophysiology of hypertension and the potential use of antioxidants in the management of hypertension and its associated organ damage.

8.
Nat Commun ; 13(1): 6255, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271049

RESUMEN

Diabetes is a multifactorial disorder characterized by loss or dysfunction of pancreatic ß-cells. ß-cells are heterogeneous, exhibiting different glucose sensing, insulin secretion and gene expression. They communicate with other endocrine cell types via paracrine signals and between ß-cells via gap junctions. Here, we identify the importance of signaling between ß-cells via the extracellular signal WNT4. We show heterogeneity in Wnt4 expression, most strikingly in the postnatal maturation period, Wnt4-positive cells, being more mature while Wnt4-negative cells are more proliferative. Knock-out in adult ß-cells shows that WNT4 controls the activation of calcium signaling in response to a glucose challenge, as well as metabolic pathways converging to lower ATP/ADP ratios, thereby reducing insulin secretion. These results reveal that paracrine signaling between ß-cells is important in addition to gap junctions in controling insulin secretion. Together with previous reports of WNT4 up-regulation in obesity our observations suggest an adaptive insulin response coordinating ß-cells.


Asunto(s)
Señalización del Calcio , Insulinas , Glucosa/metabolismo , Adenosina Trifosfato/metabolismo , Insulinas/metabolismo , Adenosina Difosfato/metabolismo
9.
J Vis Exp ; (170)2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33900291

RESUMEN

Live pancreatic tissue slices allow for the study of islet physiology and function in the context of an intact islet microenvironment. Slices are prepared from live human and mouse pancreatic tissue embedded in agarose and cut using a vibratome. This method allows for the tissue to maintain viability and function in addition to preserving underlying pathologies such as type 1 (T1D) and type 2 diabetes (T2D). The slice method enables new directions in the study of the pancreas through the maintenance of the complex structures and various intercellular interactions that comprise the endocrine and exocrine tissues of the pancreas. This protocol demonstrates how to perform staining and time-lapse microscopy of live endogenous immune cells within pancreatic slices along with assessments of islet physiology. Further, this approach can be refined to discern immune cell populations specific for islet cell antigens using major histocompatibility complex-multimer reagents.


Asunto(s)
Comunicación Celular , Diabetes Mellitus Tipo 2/patología , Sistema Inmunológico/metabolismo , Islotes Pancreáticos/metabolismo , Páncreas/fisiología , Animales , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/metabolismo , Sistema Inmunológico/citología , Islotes Pancreáticos/citología , Ratones
10.
Cell Stem Cell ; 28(6): 1105-1124.e19, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33915078

RESUMEN

Personalized in vitro models for dysplasia and carcinogenesis in the pancreas have been constrained by insufficient differentiation of human pluripotent stem cells (hPSCs) into the exocrine pancreatic lineage. Here, we differentiate hPSCs into pancreatic duct-like organoids (PDLOs) with morphological, transcriptional, proteomic, and functional characteristics of human pancreatic ducts, further maturing upon transplantation into mice. PDLOs are generated from hPSCs inducibly expressing oncogenic GNAS, KRAS, or KRAS with genetic covariance of lost CDKN2A and from induced hPSCs derived from a McCune-Albright patient. Each oncogene causes a specific growth, structural, and molecular phenotype in vitro. While transplanted PDLOs with oncogenic KRAS alone form heterogenous dysplastic lesions or cancer, KRAS with CDKN2A loss develop dedifferentiated pancreatic ductal adenocarcinomas. In contrast, transplanted PDLOs with mutant GNAS lead to intraductal papillary mucinous neoplasia-like structures. Conclusively, PDLOs enable in vitro and in vivo studies of pancreatic plasticity, dysplasia, and cancer formation from a genetically defined background.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Células Madre Pluripotentes , Animales , Humanos , Ratones , Mutación , Organoides , Conductos Pancreáticos , Neoplasias Pancreáticas/genética , Proteómica
11.
Am J Pathol ; 191(3): 454-462, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33307036

RESUMEN

Emerging data suggest that type 1 diabetes affects not only the ß-cell-containing islets of Langerhans, but also the surrounding exocrine compartment. Using digital pathology, machine learning algorithms were applied to high-resolution, whole-slide images of human pancreata to determine whether the tissue composition in individuals with or at risk for type 1 diabetes differs from those without diabetes. Transplant-grade pancreata from organ donors were evaluated from 16 nondiabetic autoantibody-negative controls, 8 nondiabetic autoantibody-positive subjects with increased type 1 diabetes risk, and 19 persons with type 1 diabetes (0 to 12 years' duration). HALO image analysis algorithms were implemented to compare architecture of the main pancreatic duct as well as cell size, density, and area of acinar, endocrine, ductal, and other nonendocrine, nonexocrine tissues. Type 1 diabetes was found to affect exocrine area, acinar cell density, and size, whereas the type of difference correlated with the presence or absence of insulin-positive cells remaining in the pancreas. These changes were not observed before disease onset, as indicated by modeling cross-sectional data from pancreata of autoantibody-positive subjects and those diagnosed with type 1 diabetes. These data provide novel insights into anatomic differences in type 1 diabetes pancreata and demonstrate that machine learning can be adapted for the evaluation of disease processes from cross-sectional data sets.


Asunto(s)
Algoritmos , Autoanticuerpos/inmunología , Diabetes Mellitus Tipo 1/patología , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Páncreas/patología , Adolescente , Autoanticuerpos/sangre , Estudios de Casos y Controles , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Femenino , Humanos , Insulina/análisis , Páncreas/inmunología , Páncreas/metabolismo , Donantes de Tejidos
12.
Diabetes ; 69(11): 2246-2252, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32843570

RESUMEN

Glucagon-like peptide 1 receptor (GLP-1R) imaging with radiolabeled exendin has proven to be a powerful tool to quantify ß-cell mass (BCM) in vivo. As GLP-1R expression is thought to be influenced by glycemic control, we examined the effect of blood glucose (BG) levels on GLP-1R-mediated exendin uptake in both murine and human islets and its implications for BCM quantification. Periods of hyperglycemia significantly reduced exendin uptake in murine and human islets, which was paralleled by a reduction in GLP-1R expression. Detailed mapping of the tracer uptake and insulin and GLP-1R expression conclusively demonstrated that the observed reduction in tracer uptake directly correlates to GLP-1R expression levels. Importantly, the linear correlation between tracer uptake and ß-cell area was maintained in spite of the reduced GLP-1R expression levels. Subsequent normalization of BG levels restored absolute tracer uptake and GLP-1R expression in ß-cells and the observed loss in islet volume was halted. This manuscript emphasizes the potency of nuclear imaging techniques to monitor receptor regulation noninvasively. Our findings have significant implications for clinical practice, indicating that BG levels should be near-normalized for at least 3 weeks prior to GLP-1R agonist treatment or quantitative radiolabeled exendin imaging for BCM analysis.


Asunto(s)
Glucemia , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucosa/farmacología , Islotes Pancreáticos/efectos de los fármacos , Monitoreo Fisiológico , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Receptor del Péptido 1 Similar al Glucagón/genética , Humanos , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones SCID , Péptidos/metabolismo
13.
Nat Commun ; 11(1): 3265, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601271

RESUMEN

The culture of live pancreatic tissue slices is a powerful tool for the interrogation of physiology and pathology in an in vitro setting that retains near-intact cytoarchitecture. However, current culture conditions for human pancreatic slices (HPSs) have only been tested for short-term applications, which are not permissive for the long-term, longitudinal study of pancreatic endocrine regeneration. Using a culture system designed to mimic the physiological oxygenation of the pancreas, we demonstrate high viability and preserved endocrine and exocrine function in HPS for at least 10 days after sectioning. This extended lifespan allowed us to dynamically lineage trace and quantify the formation of insulin-producing cells in HPS from both non-diabetic and type 2 diabetic donors. This technology is expected to be of great impact for the conduct of real-time regeneration/developmental studies in the human pancreas.


Asunto(s)
Islotes Pancreáticos/citología , Páncreas/citología , Técnicas de Cultivo de Tejidos/métodos , Animales , Humanos , Estudios Longitudinales , Ratones , Modelos Biológicos , Regeneración , Células Madre/citología
15.
JCI Insight ; 5(8)2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32324170

RESUMEN

In type 1 diabetes (T1D), autoimmune destruction of pancreatic ß cells leads to insulin deficiency and loss of glycemic control. However, knowledge about human pancreas pathophysiology in T1D remains incomplete. To address this limitation, we established a pancreas tissue slice platform of donor organs with and without diabetes, facilitating the first live cell studies of human pancreas in T1D pathogenesis to our knowledge. We show that pancreas tissue slices from organ donors allow thorough assessment of processes critical for disease development, including insulin secretion, ß cell physiology, endocrine cell morphology, and immune infiltration within the same donor organ. Using this approach, we compared detailed pathophysiological profiles for 4 pancreata from donors with T1D with 19 nondiabetic control donors. We demonstrate that ß cell loss, ß cell dysfunction, alterations of ß cell physiology, and islet infiltration contributed differently to individual cases of T1D, allowing insight into pathophysiology and heterogeneity of T1D pathogenesis. Thus, our study demonstrates that organ donor pancreas tissue slices represent a promising and potentially novel approach in the search for successful prevention and reversal strategies of T1D.


Asunto(s)
Diabetes Mellitus Tipo 1/fisiopatología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Páncreas/fisiopatología , Técnicas de Cultivo de Tejidos , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Donantes de Tejidos , Adulto Joven
16.
Cell Rep ; 31(1): 107469, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268101

RESUMEN

Type 2 diabetes is characterized by peripheral insulin resistance and insufficient insulin release from pancreatic islet ß cells. However, the role and sequence of ß cell dysfunction and mass loss for reduced insulin levels in type 2 diabetes pathogenesis are unclear. Here, we exploit freshly explanted pancreas specimens from metabolically phenotyped surgical patients using an in situ tissue slice technology. This approach allows assessment of ß cell volume and function within pancreas samples of metabolically stratified individuals. We show that, in tissue of pre-diabetic, impaired glucose-tolerant subjects, ß cell volume is unchanged, but function significantly deteriorates, exhibiting increased basal release and loss of first-phase insulin secretion. In individuals with type 2 diabetes, function within the sustained ß cell volume further declines. These results indicate that dysfunction of persisting ß cells is a key factor in the early development and progression of type 2 diabetes, representing a major target for diabetes prevention and therapy.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Células Secretoras de Insulina/patología , Anciano , Glucemia/metabolismo , Femenino , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Secreción de Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Masculino , Persona de Mediana Edad , Páncreas/metabolismo
17.
Methods Mol Biol ; 2128: 149-157, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180192

RESUMEN

Noninvasive in vivo imaging techniques are attractive tools to longitudinally study various aspects of islet of Langerhans physiology and pathophysiology. Unfortunately, most imaging modalities currently applicable for clinical use do not allow the comprehensive investigation of islet cell biology due to limitations in resolution and/or sensitivity, while high-resolution imaging technologies like laser scanning microscopy (LSM) lack the penetration depth to assess islets of Langerhans within the pancreas. Significant progress in this area was made by the combination of LSM with the anterior chamber of the mouse eye platform, utilizing the cornea as a natural body window to study cell physiology of transplanted islets of Langerhans. We here describe the transplantation and longitudinal in vivo imaging of islets of Langerhans in the anterior chamber of the mouse eye as a versatile tool to study different features of islet physiology in health and disease.


Asunto(s)
Cámara Anterior/anatomía & histología , Trasplante de Islotes Pancreáticos/diagnóstico por imagen , Trasplante de Islotes Pancreáticos/métodos , Microscopía Confocal/métodos , Animales , Cámara Anterior/trasplante , Cámara Anterior/ultraestructura , Modelos Animales de Enfermedad , Islotes Pancreáticos/citología , Islotes Pancreáticos/fisiología , Trasplante de Islotes Pancreáticos/instrumentación , Estudios Longitudinales , Ratones , Ratones Mutantes , Microscopía Confocal/instrumentación , Trasplante Heterotópico
18.
Methods Mol Biol ; 2128: 301-312, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180201

RESUMEN

Studies on islet of Langerhans physiology are crucial to understand the role of the endocrine pancreas in diabetes pathogenesis and the development of new therapeutic approaches. However, so far most research addressing islet of Langerhans biology relies on islets obtained via enzymatic isolation from the pancreas, which is known to cause mechanical and chemical stress, thus having a major impact on islet cell physiology. To circumvent the limitations of islet isolation, we have pioneered a platform for the study of islet physiology using the pancreas tissue slice technique. This approach allows to explore the detailed three-dimensional morphology of intact pancreatic tissue at a cellular level and to investigate islet cell function under near-physiological conditions. The described procedure is less damaging and faster than alternative approaches and particularly advantageous for studying infiltrated and structurally damaged islets. Furthermore, pancreas tissue slices have proven valuable for acute studies of endocrine as well as exocrine cell physiology in their conserved natural environment. We here provide a detailed protocol for the preparation of mouse pancreas tissue slices, the assessment of slice viability, and the study of pancreas cell physiology by hormone secretion and immunofluorescence staining.


Asunto(s)
Técnicas de Preparación Histocitológica/métodos , Islotes Pancreáticos/fisiología , Páncreas/citología , Técnicas de Cultivo de Tejidos/métodos , Animales , Supervivencia Celular/fisiología , Técnica del Anticuerpo Fluorescente/métodos , Secreción de Insulina/fisiología , Ratones , Técnicas Analíticas Microfluídicas/métodos , Recolección de Tejidos y Órganos
19.
J Allergy Clin Immunol ; 143(5): 1849-1864.e4, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30339853

RESUMEN

BACKGROUND: Mast cells (MCs) are best known as key effector cells of allergic reactions, but they also play an important role in host defense against pathogens. Despite increasing evidence for a critical effect of MCs on adaptive immunity, the underlying mechanisms are poorly understood. OBJECTIVE: Here we monitored MC intercellular communication with dendritic cells (DCs), MC activation, and degranulation and tracked the fate of exocytosed mast cell granules (MCGs) during skin inflammation. METHODS: Using a strategy to stain intracellular MCGs in vivo, we tracked the MCG fate after skin inflammation-induced MC degranulation. Furthermore, exogenous MCGs were applied to MC-deficient mice by means of intradermal injection. MCG effects on DC functionality and adaptive immune responses in vivo were assessed by combining intravital multiphoton microscopy with flow cytometry and functional assays. RESULTS: We demonstrate that dermal DCs engulf the intact granules exocytosed by MCs on skin inflammation. Subsequently, the engulfed MCGs are actively shuttled to skin-draining lymph nodes and finally degraded inside DCs within the lymphoid tissue. Most importantly, MCG uptake promotes DC maturation and migration to skin-draining lymph nodes, partially through MC-derived TNF, and boosts their T-cell priming efficiency. Surprisingly, exogenous MCGs alone are sufficient to induce a prominent DC activation and T-cell response. CONCLUSION: Our study highlights a unique feature of peripheral MCs to affect lymphoid tissue-borne adaptive immunity over distance by modifying DC functionality through delivery of granule-stored mediators.


Asunto(s)
Dermatitis/metabolismo , Hipersensibilidad/metabolismo , Células de Langerhans/fisiología , Mastocitos/fisiología , Vesículas Secretoras/metabolismo , Piel/inmunología , Linfocitos T/inmunología , Animales , Comunicación Celular , Diferenciación Celular , Movimiento Celular , Células Cultivadas , Dermatitis/inmunología , Modelos Animales de Enfermedad , Endocitosis , Humanos , Hipersensibilidad/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL
20.
Diabetologia ; 61(1): 182-192, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28884198

RESUMEN

AIMS/HYPOTHESIS: Tissue-resident macrophages sense the microenvironment and respond by producing signals that act locally to maintain a stable tissue state. It is now known that pancreatic islets contain their own unique resident macrophages, which have been shown to promote proliferation of the insulin-secreting beta cell. However, it is unclear how beta cells communicate with islet-resident macrophages. Here we hypothesised that islet macrophages sense changes in islet activity by detecting signals derived from beta cells. METHODS: To investigate how islet-resident macrophages respond to cues from the microenvironment, we generated mice expressing a genetically encoded Ca2+ indicator in myeloid cells. We produced living pancreatic slices from these mice and used them to monitor macrophage responses to stimulation of acinar, neural and endocrine cells. RESULTS: Islet-resident macrophages expressed functional purinergic receptors, making them exquisite sensors of interstitial ATP levels. Indeed, islet-resident macrophages responded selectively to ATP released locally from beta cells that were physiologically activated with high levels of glucose. Because ATP is co-released with insulin and is exclusively secreted by beta cells, the activation of purinergic receptors on resident macrophages facilitates their awareness of beta cell secretory activity. CONCLUSIONS/INTERPRETATION: Our results indicate that islet macrophages detect ATP as a proxy signal for the activation state of beta cells. Sensing beta cell activity may allow macrophages to adjust the secretion of factors to promote a stable islet composition and size.


Asunto(s)
Adenosina Trifosfato/metabolismo , Macrófagos/metabolismo , Páncreas/citología , Páncreas/metabolismo , Animales , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/citología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA