Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nat Commun ; 5: 4012, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24874202

RESUMEN

Previous efforts to control cellular behaviour have largely relied upon various forms of genetic engineering. Once the genetic content of a living cell is modified, the behaviour of that cell typically changes as well. However, other methods of cellular control are possible. All cells sense and respond to their environment. Therefore, artificial, non-living cellular mimics could be engineered to activate or repress already existing natural sensory pathways of living cells through chemical communication. Here we describe the construction of such a system. The artificial cells expand the senses of Escherichia coli by translating a chemical message that E. coli cannot sense on its own to a molecule that activates a natural cellular response. This methodology could open new opportunities in engineering cellular behaviour without exploiting genetically modified organisms.


Asunto(s)
Células Artificiales/metabolismo , Ingeniería Celular/métodos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Riboswitch/genética , Células Artificiales/efectos de los fármacos , Vesículas Citoplasmáticas/efectos de los fármacos , Vesículas Citoplasmáticas/metabolismo , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/efectos de los fármacos , Proteínas Hemolisinas/efectos de los fármacos , Isopropil Tiogalactósido/metabolismo , Antagonistas de Receptores Purinérgicos P1/farmacología , Riboswitch/efectos de los fármacos , Teofilina/farmacología
2.
J Vis Exp ; (80): e51304, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-24192867

RESUMEN

As interest shifts from individual molecules to systems of molecules, an increasing number of laboratories have sought to build from the bottom up cellular mimics that better represent the complexity of cellular life. To date there are a number of paths that could be taken to build compartmentalized cellular mimics, including the exploitation of water-in-oil emulsions, microfluidic devices, and vesicles. Each of the available options has specific advantages and disadvantages. For example, water-in-oil emulsions give high encapsulation efficiency but do not mimic well the permeability barrier of living cells. The primary advantage of the methods described herein is that they are all easy and cheap to implement. Transcription-translation machinery is encapsulated inside of phospholipid vesicles through a process that exploits common instrumentation, such as a centrifugal evaporator and an extruder. Reactions are monitored by fluorescence spectroscopy. The protocols can be adapted for recombinant protein expression, the construction of cellular mimics, the exploration of the minimum requirements for cellular life, or the assembly of genetic circuitry.


Asunto(s)
Biomimética/métodos , Sistema Libre de Células , Biosíntesis de Proteínas , Transcripción Genética , Fosfolípidos/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Espectrometría de Fluorescencia/métodos , Liposomas Unilamelares/química
3.
ACS Synth Biol ; 2(9): 482-9, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23654270

RESUMEN

To facilitate the construction of cell-free genetic devices, we evaluated the ability of 17 different fluorescent proteins to give easily detectable fluorescence signals in real-time from in vitro transcription-translation reactions with a minimal system consisting of T7 RNA polymerase and E. coli translation machinery, i.e., the PUREsystem. The data were used to construct a ratiometric fluorescence assay to quantify the effect of genetic organization on in vitro expression levels. Synthetic operons with varied spacing and sequence composition between two genes that coded for fluorescent proteins were then assembled. The resulting data indicated which restriction sites and where the restriction sites should be placed in order to build genetic devices in a manner that does not interfere with protein expression. Other simple design rules were identified, such as the spacing and sequence composition influences of regions upstream and downstream of ribosome binding sites and the ability of non-AUG start codons to function in vitro.


Asunto(s)
Escherichia coli/genética , Técnicas Genéticas , Proteínas Luminiscentes/metabolismo , Biosíntesis de Proteínas , Biología Sintética/métodos , Transcripción Genética , Sistema Libre de Células , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/metabolismo , Fluorescencia , Expresión Génica , Modelos Logísticos , Proteínas Luminiscentes/genética , Ribosomas/genética , Ribosomas/metabolismo , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA