Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 116(12): 1981-1994, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31990292

RESUMEN

AIMS: Long non-coding RNAs (lncRNAs) play functional roles in physiology and disease, yet understanding of their contribution to endothelial cell (EC) function is incomplete. We identified lncRNAs regulated during EC differentiation and investigated the role of LINC00961 and its encoded micropeptide, small regulatory polypeptide of amino acid response (SPAAR), in EC function. METHODS AND RESULTS: Deep sequencing of human embryonic stem cell differentiation to ECs was combined with Encyclopedia of DNA Elements (ENCODE) RNA-seq data from vascular cells, identifying 278 endothelial enriched genes, including 6 lncRNAs. Expression of LINC00961, first annotated as an lncRNA but reassigned as a protein-coding gene for the SPAAR micropeptide, was increased during the differentiation and was EC enriched. LINC00961 transcript depletion significantly reduced EC adhesion, tube formation, migration, proliferation, and barrier integrity in primary ECs. Overexpression of the SPAAR open reading frame increased tubule formation; however, overexpression of the full-length transcript did not, despite production of SPAAR. Furthermore, overexpression of an ATG mutant of the full-length transcript reduced network formation, suggesting a bona fide non-coding RNA function of the transcript with opposing effects to SPAAR. As the LINC00961 locus is conserved in mouse, we generated an LINC00961 locus knockout (KO) mouse that underwent hind limb ischaemia (HLI) to investigate the angiogenic role of this locus in vivo. In agreement with in vitro data, KO animals had a reduced capillary density in the ischaemic adductor muscle after 7 days. Finally, to characterize LINC00961 and SPAAR independent functions in ECs, we performed pull-downs of both molecules and identified protein-binding partners. LINC00961 RNA binds the G-actin sequestering protein thymosin beta-4x (Tß4) and Tß4 depletion phenocopied the overexpression of the ATG mutant. SPAAR binding partners included the actin-binding protein, SYNE1. CONCLUSION: The LINC00961 locus regulates EC function in vitro and in vivo. The gene produces two molecules with opposing effects on angiogenesis: SPAAR and LINC00961.


Asunto(s)
Células Endoteliales/metabolismo , Miembro Posterior/irrigación sanguínea , Isquemia/metabolismo , Neovascularización Fisiológica , Péptidos/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Diferenciación Celular , Línea Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Isquemia/genética , Isquemia/fisiopatología , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Péptidos/genética , Unión Proteica , ARN Largo no Codificante/genética , RNA-Seq , Transducción de Señal , Timosina/genética , Timosina/metabolismo , Transcriptoma
2.
Arterioscler Thromb Vasc Biol ; 39(6): 1113-1124, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31018661

RESUMEN

Objective- To determine the role of the oncofetal protein TPBG (trophoblast glycoprotein) in normal vascular function and reparative vascularization. Approach and Results- Immunohistochemistry of human veins was used to show TPBG expression in vascular smooth muscle cells and adventitial pericyte-like cells (APCs). ELISA, Western blot, immunocytochemistry, and proximity ligation assays evidenced a hypoxia-dependent upregulation of TPBG in APCs not found in vascular smooth muscle cells or endothelial cells. This involves the transcriptional modulator CITED2 (Atypical chemokine receptor 3 CBP/p300-interacting transactivator with glutamic acid (E)/aspartic acid (D)-rich tail) and downstream activation of CXCL12 (chemokine [C-X-C motif] ligand-12) signaling through the CXCR7 (C-X-C chemokine receptor type 7) receptor and ERK1/2 (extracellular signal-regulated kinases 1/2). TPBG silencing by siRNA transfection downregulated CXCL12, CXCR7, and pERK (phospho Thr202/Tyr204 ERK1/2) and reduced the APC migratory and proangiogenic capacities. TPBG forced expression induced opposite effects, which were associated with the formation of CXCR7/CXCR4 (C-X-C chemokine receptor type 4) heterodimers and could be contrasted by CXCL12 and CXCR7 neutralization. In vivo Matrigel plug assays using APCs with or without TPBG silencing evidenced TPBG is essential for angiogenesis. Finally, in immunosuppressed mice with limb ischemia, intramuscular injection of TPBG-overexpressing APCs surpassed naïve APCs in enhancing perfusion recovery and reducing the rate of toe necrosis. Conclusions- TPBG orchestrates the migratory and angiogenic activities of pericytes through the activation of the CXCL12/CXCR7/pERK axis. This novel mechanism could be a relevant target for therapeutic improvement of reparative angiogenesis.


Asunto(s)
Movimiento Celular , Glicoproteínas de Membrana/metabolismo , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica , Pericitos/metabolismo , Vena Safena/metabolismo , Animales , Antígenos de Superficie/genética , Antígenos de Superficie/metabolismo , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Miembro Posterior , Humanos , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatología , Isquemia/cirugía , Masculino , Glicoproteínas de Membrana/genética , Ratones Endogámicos C57BL , Ratones Desnudos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Pericitos/trasplante , Fosforilación , Receptores CXCR/genética , Receptores CXCR/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Transactivadores/genética , Transactivadores/metabolismo
3.
Mol Ther ; 26(7): 1669-1684, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29703701

RESUMEN

Pluripotent stem cell-derived differentiated endothelial cells offer high potential in regenerative medicine in the cardiovascular system. With the aim of translating the use of a human stem cell-derived endothelial cell product (hESC-ECP) for treatment of critical limb ischemia (CLI) in man, we report a good manufacturing practice (GMP)-compatible protocol and detailed cell tracking and efficacy data in multiple preclinical models. The clinical-grade cell line RC11 was used to generate hESC-ECP, which was identified as mostly endothelial (60% CD31+/CD144+), with the remainder of the subset expressing various pericyte/mesenchymal stem cell markers. Cell tracking using MRI, PET, and qPCR in a murine model of limb ischemia demonstrated that hESC-ECP was detectable up to day 7 following injection. Efficacy in several murine models of limb ischemia (immunocompromised/immunocompetent mice and mice with either type I/II diabetes mellitus) demonstrated significantly increased blood perfusion and capillary density. Overall, we demonstrate a GMP-compatible hESC-ECP that improved ischemic limb perfusion and increased local angiogenesis without engraftment, paving the way for translation of this therapy.


Asunto(s)
Células Endoteliales/citología , Miembro Posterior/citología , Isquemia/terapia , Neovascularización Fisiológica/fisiología , Animales , Biomarcadores/metabolismo , Diferenciación Celular/fisiología , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Endoteliales/metabolismo , Miembro Posterior/metabolismo , Humanos , Isquemia/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Pericitos/citología , Pericitos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Trasplante de Células Madre/métodos
4.
J Am Heart Assoc ; 4(6): e002043, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26080813

RESUMEN

BACKGROUND: Living grafts produced by combining autologous heart-resident stem/progenitor cells and tissue engineering could provide a new therapeutic option for definitive correction of congenital heart disease. The aim of the study was to investigate the antigenic profile, expansion/differentiation capacity, paracrine activity, and pro-angiogenic potential of cardiac pericytes and to assess their engrafting capacity in clinically certified prosthetic grafts. METHODS AND RESULTS: CD34(pos) cells, negative for the endothelial markers CD31 and CD146, were identified by immunohistochemistry in cardiac leftovers from infants and children undergoing palliative repair of congenital cardiac defects. Following isolation by immunomagnetic bead-sorting and culture on plastic in EGM-2 medium supplemented with growth factors and serum, CD34(pos)/CD31(neg) cells gave rise to a clonogenic, highly proliferative (>20 million at P5), spindle-shape cell population. The following populations were shown to expresses pericyte/mesenchymal and stemness markers. After exposure to differentiation media, the expanded cardiac pericytes acquired markers of vascular smooth muscle cells, but failed to differentiate into endothelial cells or cardiomyocytes. However, in Matrigel, cardiac pericytes form networks and enhance the network capacity of endothelial cells. Moreover, they produce collagen-1 and release chemo-attractants that stimulate the migration of c-Kit(pos) cardiac stem cells. Cardiac pericytes were then seeded onto clinically approved xenograft scaffolds and cultured in a bioreactor. After 3 weeks, fluorescent microscopy showed that cardiac pericytes had penetrated into and colonized the graft. CONCLUSIONS: These findings open new avenues for cellular functionalization of prosthetic grafts to be applied in reconstructive surgery of congenital heart disease.


Asunto(s)
Cardiopatías Congénitas/cirugía , Pericitos/citología , Ingeniería de Tejidos/métodos , Medios de Cultivo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Humanos , Lactante , Recién Nacido , Pericitos/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Madre/citología , Células Madre/fisiología , Trasplante de Tejidos/métodos
5.
Stem Cell Res Ther ; 6: 53, 2015 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-25889213

RESUMEN

INTRODUCTION: Chemokine-directed migration is crucial for homing of regenerative cells to the infarcted heart and correlates with outcomes of cell therapy trials. Hence, transplantation of chemokine-responsive bone marrow cells may be ideal for treatment of myocardial ischemia. To verify the therapeutic activity of bone marrow mononuclear cells (BM-MNCs) selected by in vitro migration towards the chemokine stromal cell-derived factor-1 (SDF-1) in a mouse model of myocardial infarction (MI), we used BM-MNCs from patients with previous large MI recruited in the TransACT-1&2 cell therapy trials. METHODS: Unfractioned BM-MNCs, SDF-1-responsive, and SDF-1-nonresponsive BM-MNCs isolated by patients recruited in the TransACT-1&2 cell therapy trials were tested in Matrigel assay to evaluate angiogenic potential. Secretome and antigenic profile were characterized by flow cytometry. Angiogenin expression was measured by RT-PCR. Cells groups were also intramyocardially injected in an in vivo model of MI (8-week-old immune deficient CD1-FOXN1(nu/nu) mice). Echocardiography and hemodynamic measurements were performed before and at 14 days post-MI. Arterioles and capillaries density, infiltration of inflammatory cells, interstitial fibrosis, and cardiomyocyte proliferation and apoptosis were assessed by immunohistochemistry. RESULTS: In vitro migration enriched for monocytes, while CD34(+) and CD133(+) cells and T lymphocytes remained mainly confined in the non-migrated fraction. Unfractioned total BM-MNCs promoted angiogenesis on Matrigel more efficiently than migrated or non-migrated cells. In mice with induced MI, intramyocardial injection of unfractionated or migrated BM-MNCs was more effective in preserving cardiac contractility and pressure indexes than vehicle or non-migrated BM-MNCs. Moreover, unfractioned BM-MNCs enhanced neovascularization, whereas the migrated fraction was unique in reducing the infarct size and interstitial fibrosis. In vitro studies on isolated cardiomyocytes suggest participation of angiogenin, a secreted ribonuclease that inhibits protein translation under stress conditions, in promotion of cardiomyocyte survival by migrated BM-MNCs. CONCLUSIONS: Transplantation of bone marrow cells helps post-MI healing through distinct actions on vascular cells and cardiomyocytes. In addition, the SDF-1-responsive fraction is enriched with angiogenin-expressing monocytes, which may improve cardiac recovery through activation of cardiomyocyte response to stress. Identification of factors linking migratory and therapeutic outcomes could help refine regenerative approaches.


Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Quimiocina CXCL12/farmacología , Monocitos/trasplante , Isquemia Miocárdica/terapia , Ribonucleasa Pancreática/metabolismo , Antígeno AC133 , Animales , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Células de la Médula Ósea/citología , Movimiento Celular/efectos de los fármacos , Citocinas/análisis , Modelos Animales de Enfermedad , Ecocardiografía , Glicoproteínas/metabolismo , Hemodinámica , Humanos , Péptidos y Proteínas de Señalización Intercelular/análisis , Masculino , Ratones , Persona de Mediana Edad , Monocitos/citología , Monocitos/metabolismo , Isquemia Miocárdica/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Péptidos/metabolismo , Ribonucleasa Pancreática/genética
6.
Circ Res ; 116(10): e81-94, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25801898

RESUMEN

RATIONALE: Optimization of cell therapy for cardiac repair may require the association of different cell populations with complementary activities. OBJECTIVE: Compare the reparative potential of saphenous vein-derived pericytes (SVPs) with that of cardiac stem cells (CSCs) in a model of myocardial infarction, and investigate whether combined cell transplantation provides further improvements. METHODS AND RESULTS: SVPs and CSCs were isolated from vein leftovers of coronary artery bypass graft surgery and discarded atrial specimens of transplanted hearts, respectively. Single or dual cell therapy (300 000 cells of each type per heart) was tested in infarcted SCID (severe combined immunodeficiency)-Beige mice. SVPs and CSCs alone improved cardiac contractility as assessed by echocardiography at 14 days post myocardial infarction. The effect was maintained, although attenuated at 42 days. At histological level, SVPs and CSCs similarly inhibited infarct size and interstitial fibrosis, SVPs were superior in inducing angiogenesis and CSCs in promoting cardiomyocyte proliferation and recruitment of endogenous stem cells. The combination of cells additively reduced the infarct size and promoted vascular proliferation and arteriogenesis, but did not surpass single therapies with regard to contractility indexes. SVPs and CSCs secrete similar amounts of hepatocyte growth factor, vascular endothelial growth factor, fibroblast growth factor, stem cell factor, and stromal cell-derived factor-1, whereas SVPs release higher quantities of angiopoietins and microRNA-132. Coculture of the 2 cell populations results in competitive as well as enhancing paracrine activities. In particular, the release of stromal cell-derived factor-1 was synergistically augmented along with downregulation of stromal cell-derived factor-1-degrading enzyme dipeptidyl peptidase 4. CONCLUSIONS: Combinatory therapy with SVPs and CSCs may complementarily help the repair of infarcted hearts.


Asunto(s)
Infarto del Miocardio/cirugía , Miocardio/patología , Miocitos Cardíacos/trasplante , Neovascularización Fisiológica , Pericitos/trasplante , Regeneración , Trasplante de Células Madre , Proteínas Angiogénicas/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Fibrosis , Hemodinámica , Humanos , Ratones SCID , Contracción Miocárdica , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Comunicación Paracrina , Pericitos/metabolismo , Fenotipo , Recuperación de la Función , Vena Safena/citología , Factores de Tiempo , Remodelación Ventricular
7.
Arterioscler Thromb Vasc Biol ; 35(3): 675-88, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25573856

RESUMEN

OBJECTIVE: We investigated the association between the functional, epigenetic, and expressional profile of human adventitial progenitor cells (APCs) and therapeutic activity in a model of limb ischemia. APPROACH AND RESULTS: Antigenic and functional features were analyzed throughout passaging in 15 saphenous vein (SV)-derived APC lines, of which 10 from SV leftovers of coronary artery bypass graft surgery and 5 from varicose SV removal. Moreover, 5 SV-APC lines were transplanted (8×10(5) cells, IM) in mice with limb ischemia. Blood flow and capillary and arteriole density were correlated with functional characteristics and DNA methylation/expressional markers of transplanted cells. We report successful expansion of tested lines, which reached the therapeutic target of 30 to 50 million cells in ≈10 weeks. Typical antigenic profile, viability, and migratory and proangiogenic activities were conserved through passaging, with low levels of replicative senescence. In vivo, SV-APC transplantation improved blood flow recovery and revascularization of ischemic limbs. Whole genome screening showed an association between DNA methylation at the promoter or gene body level and microvascular density and to a lesser extent with blood flow recovery. Expressional studies highlighted the implication of an angiogenic network centered on the vascular endothelial growth factor receptor as a predictor of microvascular outcomes. FLT-1 gene silencing in SV-APCs remarkably reduced their ability to form tubes in vitro and support tube formation by human umbilical vein endothelial cells, thus confirming the importance of this signaling in SV-APC angiogenic function. CONCLUSIONS: DNA methylation landscape illustrates different therapeutic activities of human APCs. Epigenetic screening may help identify determinants of therapeutic vasculogenesis in ischemic disease.


Asunto(s)
Adventicia/trasplante , Metilación de ADN , Epigénesis Genética , Isquemia/cirugía , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica , Vena Safena/trasplante , Trasplante de Células Madre , Células Madre/fisiología , Adventicia/citología , Animales , Velocidad del Flujo Sanguíneo , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Miembro Posterior , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Isquemia/genética , Isquemia/fisiopatología , Ratones , Neovascularización Fisiológica/genética , Recuperación de la Función , Flujo Sanguíneo Regional , Vena Safena/citología , Células Madre/metabolismo , Factores de Tiempo
8.
Regen Med ; 10(1): 39-47, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25562351

RESUMEN

Ischemia is a leading cause of death in the western world. Regenerative medicine aims to improve healing of ischemic injury by complementing pharmacologic/interventional treatments. Navigating regenerative therapies from 'bench-to-bedside' is a multistep time-consuming process, balancing cell expansion, purity, safety and efficacy while complying with regulatory guidelines. Studies started in academic laboratories unused to long-term planning often fail because of poor strategy design, lack of contingency plans or funding. We provide a strategic insight into our translation of saphenous vein-derived adventitial progenitor cells into a clinical grade product to treat angina. We discuss discovery phases, introduction of standard operating procedures and upgrade to clinical standards. We also examine contractual aspects of transferring to GMP-accredited facilities for clinical production and unexpected hurdles.


Asunto(s)
Adventicia/citología , Células Madre/citología , Investigación Biomédica Traslacional , Animales , Enfermedades Cardiovasculares/terapia , Modelos Animales de Enfermedad , Humanos , Trasplante de Células Madre/efectos adversos
9.
Orphanet J Rare Dis ; 8: 68, 2013 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-23642083

RESUMEN

Brittle cornea syndrome (BCS) is an autosomal recessive disorder characterised by extreme corneal thinning and fragility. Corneal rupture can therefore occur either spontaneously or following minimal trauma in affected patients. Two genes, ZNF469 and PRDM5, have now been identified, in which causative pathogenic mutations collectively account for the condition in nearly all patients with BCS ascertained to date. Therefore, effective molecular diagnosis is now available for affected patients, and those at risk of being heterozygous carriers for BCS. We have previously identified mutations in ZNF469 in 14 families (in addition to 6 reported by others in the literature), and in PRDM5 in 8 families (with 1 further family now published by others). Clinical features include extreme corneal thinning with rupture, high myopia, blue sclerae, deafness of mixed aetiology with hypercompliant tympanic membranes, and variable skeletal manifestations. Corneal rupture may be the presenting feature of BCS, and it is possible that this may be incorrectly attributed to non-accidental injury. Mainstays of management include the prevention of ocular rupture by provision of protective polycarbonate spectacles, careful monitoring of visual and auditory function, and assessment for skeletal complications such as developmental dysplasia of the hip. Effective management depends upon appropriate identification of affected individuals, which may be challenging given the phenotypic overlap of BCS with other connective tissue disorders.


Asunto(s)
Síndrome de Ehlers-Danlos , Adolescente , Proteínas de Unión al ADN/genética , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/patología , Síndrome de Ehlers-Danlos/terapia , Anomalías del Ojo , Femenino , Humanos , Inestabilidad de la Articulación/congénito , Mutación , Anomalías Cutáneas , Factores de Transcripción/genética
10.
Mol Genet Metab ; 109(3): 289-95, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23680354

RESUMEN

Brittle cornea syndrome (BCS; MIM 229200) is an autosomal recessive generalized connective tissue disorder caused by mutations in ZNF469 and PRDM5. It is characterized by extreme thinning and fragility of the cornea that may rupture in the absence of significant trauma leading to blindness. Keratoconus or keratoglobus, high myopia, blue sclerae, hyperelasticity of the skin without excessive fragility, and hypermobility of the small joints are additional features of BCS. Transcriptional regulation of extracellular matrix components, particularly of fibrillar collagens, by PRDM5 and ZNF469 suggests that they might be part of the same pathway, the disruption of which is likely to cause the features of BCS. In the present study, we have performed molecular analysis of a cohort of 23 BCS affected patients on both ZNF469 and PRDM5, including those who were clinically reported previously [1]; the clinical description of three additional patients is reported in detail. We identified either homozygous or compound heterozygous mutations in ZNF469 in 18 patients while, 4 were found to be homozygous for PRDM5 mutations. In one single patient a mutation in neither ZNF469 nor PRDM5 was identified. Furthermore, we report the 12 novel ZNF469 variants identified in our patient cohort, and show evidence that ZNF469 is a single exon rather than a two exon gene.


Asunto(s)
Síndrome de Ehlers-Danlos/genética , Exones , Matriz Extracelular/genética , Regulación de la Expresión Génica , Mutación , Factores de Transcripción/genética , Adolescente , Niño , Preescolar , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/terapia , Anomalías del Ojo , Femenino , Genotipo , Humanos , Inestabilidad de la Articulación/congénito , Anomalías Cutáneas
11.
Am J Hum Genet ; 88(6): 767-777, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21664999

RESUMEN

Extreme corneal fragility and thinning, which have a high risk of catastrophic spontaneous rupture, are the cardinal features of brittle cornea syndrome (BCS), an autosomal-recessive generalized connective tissue disorder. Enucleation is frequently the only management option for this condition, resulting in blindness and psychosocial distress. Even when the cornea remains grossly intact, visual function could also be impaired by a high degree of myopia and keratoconus. Deafness is another common feature and results in combined sensory deprivation. Using autozygosity mapping, we identified mutations in PRDM5 in families with BCS. We demonstrate that regulation of expression of extracellular matrix components, particularly fibrillar collagens, by PRDM5 is a key molecular mechanism that underlies corneal fragility in BCS and controls normal corneal development and maintenance. ZNF469, encoding a zinc finger protein of hitherto undefined function, has been identified as a quantitative trait locus for central corneal thickness, and mutations in this gene have been demonstrated in Tunisian Jewish and Palestinian kindreds with BCS. We show that ZNF469 and PRDM5, two genes that when mutated cause BCS, participate in the same regulatory pathway.


Asunto(s)
Proteínas de Unión al ADN/genética , Matriz Extracelular/genética , Factores de Transcripción/genética , Niño , Análisis Mutacional de ADN , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/patología , Matriz Extracelular/fisiología , Anomalías del Ojo , Femenino , Humanos , Inestabilidad de la Articulación/congénito , Masculino , Mutación , Linaje , Anomalías Cutáneas
12.
FEBS Lett ; 585(14): 2187-92, 2011 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-21689651

RESUMEN

A novel gene, TMEM114, was annotated as a member of the claudin gene family and was subsequently associated as a cause of autosomal dominant cataract because of a translocation in its putative promoter. Our bioinformatic and molecular analyses of TMEM114, and the closely related TMEM235, demonstrate that these proteins are more closely related to members of the voltage dependent calcium channel gamma subunit family. TMEM114 and TMEM235 differed from claudins in terms of localisation in polarised epithelial cells and by the presence of N-linked glycans. By gene expression knockdown in Xenopus tropicalis we also demonstrate a role for Tmem114 in eye development.


Asunto(s)
Claudinas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Catarata/genética , Línea Celular , Claudinas/genética , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/fisiología , Ojo/embriología , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Ojo/patología , Humanos , Glicoproteínas de Membrana/clasificación , Proteínas de la Membrana/clasificación , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Xenopus
13.
Arterioscler Thromb Vasc Biol ; 30(7): 1389-97, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20431067

RESUMEN

OBJECTIVE: To develop an embryoid body-free directed differentiation protocol for the rapid generation of functional vascular endothelial cells derived from human embryonic stem cells (hESCs) and to assess the system for microRNA regulation and angiogenesis. METHODS AND RESULTS: The production of defined cell lineages from hESCs is a critical requirement for evaluating their potential in regenerative medicine. We developed a feeder- and serum-free protocol. Directed endothelial differentiation of hESCs revealed rapid loss of pluripotency markers and progressive induction of mRNA and protein expression of vascular markers (including CD31 and vascular endothelial [VE]-cadherin) and angiogenic growth factors (including vascular endothelial growth factor), increased expression of angiogenesis-associated microRNAs (including miR-126 and miR-210), and induction of endothelial cell morphological features. In vitro, differentiated cells produced nitric oxide, migrated across a wound, and formed tubular structures in both the absence and the presence of 3D matrices (Matrigel). In vivo, we showed that cells that differentiated for 10 days before implantation were efficient at the induction of therapeutic neovascularization and that hESC-derived cells were incorporated into the blood-perfused vasculature of recipient mice. CONCLUSIONS: The directed differentiation of hESCs is efficient and effective for the differentiation of functional endothelial cells from hESCs.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/metabolismo , Células Endoteliales/metabolismo , Isquemia/fisiopatología , MicroARNs/metabolismo , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica , Cicatrización de Heridas , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Linaje de la Célula , Movimiento Celular , Forma de la Célula , Medio de Cultivo Libre de Suero , Modelos Animales de Enfermedad , Células Madre Embrionarias/trasplante , Células Endoteliales/trasplante , Regulación del Desarrollo de la Expresión Génica , Miembro Posterior , Humanos , Isquemia/genética , Isquemia/metabolismo , Isquemia/cirugía , Ratones , Neovascularización Fisiológica/genética , Óxido Nítrico/metabolismo , ARN Mensajero/metabolismo , Trasplante de Células Madre , Factores de Tiempo , Transfección , Cicatrización de Heridas/genética
14.
Exp Cell Res ; 313(16): 3604-15, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17765223

RESUMEN

The use of gene mutation/knock-out strategies in mouse embryonic stem (ES) cells has revolutionized the study of gene function in ES cells and embryonic development. However, the construction of vectors for homologous recombination strategies requires considerable expertise and time. We describe two novel vectors that can generate site specific knock-out or EGFP knock-in ES cells within 6 weeks from construct design to identification of positive ES cell clones. As proof-of-principle, we have utilized the knock-out targeting vector to modify the NEIL2 locus in ES cells. In addition, using the knock-in vector, we have inserted EGFP downstream of the 5T4 oncofetal antigen promoter in ES cells (5T4-GFP ES cells). Undifferentiated 5T4-GFP ES cells lack EGFP and maintain expression of the pluripotent markers OCT-4 and NANOG. Upon differentiation, EGFP expression is increased in 5T4-GFP ES cells and this correlates with 5T4 transcript expression of the unmodified allele, loss of Nanog and Oct-4 transcripts and upregulation of differentiation-associated transcripts. Furthermore, we demonstrate that fluorescent activated cell sorting of 5T4-GFP ES cells allows isolation of pluripotent or differentiated cells from a heterogeneous population. These vectors provide researchers with a rapid method of modifying specific ES cell genes to study cellular differentiation and embryonic development.


Asunto(s)
Antígenos de Neoplasias/genética , Células Madre Embrionarias/metabolismo , Vectores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Regiones Promotoras Genéticas/genética , Recombinación Genética , Animales , Secuencia de Bases , Biomarcadores/metabolismo , Diferenciación Celular , Línea Celular , Células Clonales , Células Madre Embrionarias/citología , Células Madre Embrionarias/enzimología , Ratones , Datos de Secuencia Molecular , Timidina Quinasa/metabolismo
15.
Mol Biol Cell ; 18(8): 2838-51, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17507657

RESUMEN

Epithelial-mesenchymal transition (EMT) events occur during embryonic development and are important for the metastatic spread of epithelial tumors. We show here that spontaneous differentiation of mouse embryonic stem (ES) cells is associated with an E- to N-cadherin switch, up-regulation of E-cadherin repressor molecules (Snail and Slug proteins), gelatinase activity (matrix metalloproteinase [MMP]-2 and -9), and increased cellular motility, all characteristic EMT events. The 5T4 oncofetal antigen, previously shown to be associated with very early ES cell differentiation and altered motility, is also a part of this coordinated process. E- and N-cadherin and 5T4 proteins are independently regulated during ES cell differentiation and are not required for induction of EMT-associated transcripts and proteins, as judged from the study of the respective knockout ES cells. Further, abrogation of E-cadherin-mediated cell-cell contact in undifferentiated ES cells using neutralizing antibody results in a reversible mesenchymal phenotype and actin cytoskeleton rearrangement that is concomitant with translocation of the 5T4 antigen from the cytoplasm to the cell surface in an energy-dependent manner. E-cadherin null ES cells are constitutively cell surface 5T4 positive, and although forced expression of E-cadherin cDNA in these cells is sufficient to restore cell-cell contact, cell surface expression of 5T4 antigen is unchanged. 5T4 and N-cadherin knockout ES cells exhibit significantly decreased motility during EMT, demonstrating a functional role for these proteins in this process. We conclude that E-cadherin protein stabilizes cortical actin cytoskeletal arrangement in ES cells, and this can prevent cell surface localization of the promigratory 5T4 antigen.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Antígenos de Superficie/metabolismo , Cadherinas/metabolismo , Movimiento Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Actinas/metabolismo , Animales , Anticuerpos/farmacología , Comunicación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Glicoproteínas de Membrana , Mesodermo/efectos de los fármacos , Mesodermo/metabolismo , Ratones , Fenotipo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...