Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Psychiatr Res ; 172: 266-273, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417322

RESUMEN

Evidence now suggests that traumatic-stress impacts brain functions even in the absence of acute-onset post-traumatic stress disorder (PTSD) symptoms. These neurophysiological changes have also been suggested to account for increased risks of PTSD symptoms later developing in the aftermath of subsequent trauma. However, surprisingly few studies have explicitly examined brain function dynamics in high-risk populations, such as combat exposed military personnel without diagnosable PTSD. To extend available research, facial expression sensitive N170 event-related potential (ERP) amplitudes were examined in a clinically healthy sample of active service military personnel with recurrent combat exposure history. Consistent with several established theories of delayed-onset PTSD vulnerability, higher N170 amplitudes to backward-masked fearful and neutral facial expressions correlated with higher levels of past combat exposure. Significantly elevated amplitudes to nonthreatening neutral facial expressions also resulted in an absence of normal threat-versus-nonthreat signal processing specificity. While a modest sample size and cross-sectional design are key limitations here, ongoing prospective-longitudinal follow-ups may shed further light on the precise aetiology and prognostic utility of these preliminary findings in the near future.


Asunto(s)
Trastornos de Combate , Personal Militar , Trastornos por Estrés Postraumático , Veteranos , Humanos , Estudios Prospectivos , Estudios Transversales , Potenciales Evocados/fisiología , Trastornos de Combate/complicaciones
2.
Front Physiol ; 14: 1239278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711458

RESUMEN

A rhythmic expression of clock genes occurs within the cells of multiple organs and tissues throughout the body, termed "peripheral clocks." Peripheral clocks are subject to entrainment by a multitude of factors, many of which are directly or indirectly controlled by the light-entrainable clock located in the suprachiasmatic nucleus of the hypothalamus. Peripheral clocks occur in the gastrointestinal tract, notably the epithelia whose functions include regulation of absorption, permeability, and secretion of hormones; and in the myenteric plexus, which is the intrinsic neural network principally responsible for the coordination of muscular activity in the gut. This review focuses on the physiological circadian variation of major colonic functions and their entraining mechanisms, including colonic motility, absorption, hormone secretion, permeability, and pain signalling. Pathophysiological states such as irritable bowel syndrome and ulcerative colitis and their interactions with circadian rhythmicity are also described. Finally, the classic circadian hormone melatonin is discussed, which is expressed in the gut in greater quantities than the pineal gland, and whose exogenous use has been of therapeutic interest in treating colonic pathophysiological states, including those exacerbated by chronic circadian disruption.

3.
Cancers (Basel) ; 14(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36139550

RESUMEN

The long noncoding RNA NEAT1 is known to be heavily dysregulated in many cancers. A single exon gene produces two isoforms, NEAT1_1 and NEAT1_2, through alternative 3'-end processing. As the longer isoform, NEAT1_2 is an essential scaffold for nuclear paraspeckle formation. It was previously thought that the short NEAT1_1 isoform only exists to keep the NEAT1 locus active for rapid paraspeckle formation. However, a recent glycolysis-enhancing function for NEAT1_1, contributing to cancer cell proliferation and the Warburg effect, has been demonstrated. Previous studies have mainly focused on quantifying total NEAT1 and NEAT1_2 expression levels. However, in light of the NEAT1_1 role in cancer cell metabolism, the contribution from specific NEAT1 isoforms is no longer clear. Here, the roles of NEAT1_1 and NEAT1_2 in metabolism and cancer progression are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...