Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 227, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775843

RESUMEN

Proteins delivered by endocytosis or autophagy to lysosomes are degraded by exo- and endoproteases. In humans 15 lysosomal cathepsins (CTS) act as important physiological regulators. The cysteine proteases CTSB and CTSL and the aspartic protease CTSD are the most abundant and functional important lysosomal proteinases. Whereas their general functions in proteolysis in the lysosome, their individual substrate, cleavage specificity, and their possible sequential action on substrate proteins have been previously studied, their functional redundancy is still poorly understood. To address a possible common role of highly expressed and functional important CTS proteases, we generated CTSB-, CTSD-, CTSL-, and CTSBDL-triple deficient (KO) human neuroblastoma-derived SH-SY5Y cells and CTSB-, CTSD-, CTSL-, CTSZ and CTSBDLZ-quadruple deficient (KO) HeLa cells. These cells with a combined cathepsin deficiency exhibited enlarged lysosomes and accumulated lipofuscin-like storage material. The lack of the three (SH-SY5Y) or four (HeLa) major CTSs caused an impaired autophagic flux and reduced degradation of endocytosed albumin. Proteome analyses of parental and CTS-depleted cells revealed an enrichment of cleaved peptides, lysosome/autophagy-associated proteins, and potentially endocytosed membrane proteins like the amyloid precursor protein (APP), which can be subject to endocytic degradation. Amino- and carboxyterminal APP fragments accumulated in the multiple CTS-deficient cells, suggesting that multiple CTS-mediated cleavage events regularly process APP. In summary, our analyses support the idea that different lysosomal cathepsins act in concert, have at least partially and functionally redundant substrates, regulate protein degradation in autophagy, and control cellular proteostasis, as exemplified by their involvement in the degradation of APP fragments.


Asunto(s)
Autofagia , Catepsinas , Lisosomas , Proteolisis , Humanos , Lisosomas/metabolismo , Catepsinas/metabolismo , Catepsinas/genética , Células HeLa , Endocitosis , Catepsina L/metabolismo , Catepsina L/genética , Línea Celular Tumoral , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
3.
Nat Biotechnol ; 40(12): 1774-1779, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35798960

RESUMEN

Human untargeted metabolomics studies annotate only ~10% of molecular features. We introduce reference-data-driven analysis to match metabolomics tandem mass spectrometry (MS/MS) data against metadata-annotated source data as a pseudo-MS/MS reference library. Applying this approach to food source data, we show that it increases MS/MS spectral usage 5.1-fold over conventional structural MS/MS library matches and allows empirical assessment of dietary patterns from untargeted data.


Asunto(s)
Metadatos , Espectrometría de Masas en Tándem , Humanos , Metabolómica/métodos
4.
Elife ; 112022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35138247

RESUMEN

The decarboxylation of pyruvate is a central reaction in the carbon metabolism of all organisms. It is catalyzed by the pyruvate:ferredoxin oxidoreductase (PFOR) and the pyruvate dehydrogenase (PDH) complex. Whereas PFOR reduces ferredoxin, the PDH complex utilizes NAD+. Anaerobes rely on PFOR, which was replaced during evolution by the PDH complex found in aerobes. Cyanobacteria possess both enzyme systems. Our data challenge the view that PFOR is exclusively utilized for fermentation. Instead, we show, that the cyanobacterial PFOR is stable in the presence of oxygen in vitro and is required for optimal photomixotrophic growth under aerobic and highly reducing conditions while the PDH complex is inactivated. We found that cells rely on a general shift from utilizing NAD(H)- to ferredoxin-dependent enzymes under these conditions. The utilization of ferredoxins instead of NAD(H) saves a greater share of the Gibbs-free energy, instead of wasting it as heat. This obviously simultaneously decelerates metabolic reactions as they operate closer to their thermodynamic equilibrium. It is common thought that during evolution, ferredoxins were replaced by NAD(P)H due to their higher stability in an oxidizing atmosphere. However, the utilization of NAD(P)H could also have been favored due to a higher competitiveness because of an accelerated metabolism.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Piruvato-Sintasa/metabolismo , Catálisis , Ferredoxinas/metabolismo , NAD/metabolismo
5.
Mol Plant ; 13(3): 471-482, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32044444

RESUMEN

The recent discovery of the Entner-Doudoroff (ED) pathway as a third glycolytic route beside Embden-Meyerhof-Parnas (EMP) and oxidative pentose phosphate (OPP) pathway in oxygenic photoautotrophs requires a revision of their central carbohydrate metabolism. In this study, unexpectedly, we observed that deletion of the ED pathway alone, and even more pronounced in combination with other glycolytic routes, diminished photoautotrophic growth in continuous light in the cyanobacterium Synechocystis sp. PCC 6803. Furthermore, we found that the ED pathway is required for optimal glycogen catabolism in parallel to an operating Calvin-Benson-Bassham (CBB) cycle. It is counter-intuitive that glycolytic routes, which are a reverse to the CBB cycle and do not provide any additional biosynthetic intermediates, are important under photoautotrophic conditions. However, observations on the ability to reactivate an arrested CBB cycle revealed that they form glycolytic shunts that tap the cellular carbohydrate reservoir to replenish the cycle. Taken together, our results suggest that the classical view of the CBB cycle as an autocatalytic, completely autonomous cycle that exclusively relies on its own enzymes and CO2 fixation to regenerate ribulose-1,5-bisphosphate for Rubisco is an oversimplification. We propose that in common with other known autocatalytic cycles, the CBB cycle likewise relies on anaplerotic reactions to compensate for the depletion of intermediates, particularly in transition states and under fluctuating light conditions that are common in nature.


Asunto(s)
Fotosíntesis , Synechocystis/metabolismo , Procesos Autotróficos/efectos de la radiación , Glucólisis/efectos de la radiación , Luz , Fotosíntesis/efectos de la radiación , Synechocystis/efectos de la radiación
6.
Food Chem ; 302: 125290, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31404873

RESUMEN

In our daily lives, we consume foods that have been transported, stored, prepared, cooked, or otherwise processed by ourselves or others. Food storage and preparation have drastic effects on the chemical composition of foods. Untargeted mass spectrometry analysis of food samples has the potential to increase our chemical understanding of these processes by detecting a broad spectrum of chemicals. We performed a time-based analysis of the chemical changes in foods during common preparations, such as fermentation, brewing, and ripening, using untargeted mass spectrometry and molecular networking. The data analysis workflow presented implements an approach to study changes in food chemistry that can reveal global alterations in chemical profiles, identify changes in abundance, as well as identify specific chemicals and their transformation products. The data generated in this study are publicly available, enabling the replication and re-analysis of these data in isolation, and serve as a baseline dataset for future investigations.


Asunto(s)
Bebidas/análisis , Análisis de los Alimentos , Manipulación de Alimentos , Espectrometría de Masas , Metabolómica , Fermentación , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...