Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 109(37): E2457-65, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22895791

RESUMEN

The circadian clock controls many physiological parameters including immune response to infectious agents, which is mediated by activation of the transcription factor NF-κB. It is widely accepted that circadian regulation is based on periodic changes in gene expression that are triggered by transcriptional activity of the CLOCK/BMAL1 complex. Through the use of a mouse model system we show that daily variations in the intensity of the NF-κB response to a variety of immunomodulators are mediated by core circadian protein CLOCK, which can up-regulate NF-κB-mediated transcription in the absence of BMAL1; moreover, BMAL1 counteracts the CLOCK-dependent increase in the activation of NF-κB-responsive genes. Consistent with its regulatory function, CLOCK is found in protein complexes with the p65 subunit of NF-κB, and its overexpression correlates with an increase in specific phosphorylated and acetylated transcriptionally active forms of p65. In addition, activation of NF-κB in response to immunostimuli in mouse embryonic fibroblasts and primary hepatocytes isolated from Clock-deficient mice is significantly reduced compared with WT cells, whereas Clock-Δ19 mutation, which reduces the transactivation capacity of CLOCK on E-box-containing circadian promoters, has no effect on the ability of CLOCK to up-regulate NF-κB-responsive promoters. These findings establish a molecular link between two essential determinants of the circadian and immune mechanisms, the transcription factors CLOCK and NF-κB, respectively.


Asunto(s)
Proteínas CLOCK/metabolismo , Ritmo Circadiano/fisiología , Regulación de la Expresión Génica/inmunología , Regulación de la Expresión Génica/fisiología , Factor de Transcripción ReIA/metabolismo , Transcripción Genética/fisiología , Análisis de Varianza , Animales , Western Blotting , Ensayo de Cambio de Movilidad Electroforética , Ensayo de Inmunoadsorción Enzimática , Regulación de la Expresión Génica/genética , Humanos , Inmunoprecipitación , Luciferasas , Ratones , Ratones Endogámicos BALB C , Microscopía Fluorescente , Péptidos , Transcripción Genética/genética
2.
Oncotarget ; 2(12): 1279-90, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22249125

RESUMEN

Selenium compounds are known as cancer preventive agents and are also able to ameliorate the toxicity associated with anti-cancer radiation and chemotherapy in mouse models. Sensitivity to the toxicity of chemotherapy is also modulated by the circadian clock, molecular time-keeping system that underlie daily fluctuations in multiple physiological and biochemical processes. Here we show that these two mechanisms are interconnected. By screening a library of small molecules in a cell-based reporter system, we identified L-methyl-selenocysteine as a positive regulator of the core clock protein, BMAL1. L-methyl-selenocysteine up-regulates BMAL1 at the transcriptional level both in cultured cells and in mice. We also show that in tissue culture selenium exerts its action by interfering with TIEG1-mediated repression of Bmal1 promoter. Selenium treatment fails to protect BMAL1-deficient mice from toxicity induced by the chemotherapeutic agent cyclophosphamide but does protect Clock mutant mice deficient in circadian rhythm control but having normal BMAL1. These findings define selenium as circadian modulator and indicate that the tissue protective effect of selenium results, at least in part, from up-regulation of BMAL1 expression and subsequent enhancement of CLOCK/BMAL1-mediated transcription.


Asunto(s)
Factores de Transcripción ARNTL/genética , Relojes Circadianos , Neoplasias/genética , Compuestos de Selenio/farmacología , Animales , Proteínas CLOCK/genética , Línea Celular Tumoral , Ciclofosfamida/efectos adversos , Ciclofosfamida/farmacología , Cisteína/análogos & derivados , Cisteína/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Compuestos de Organoselenio/farmacología , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño , Selenocisteína/análogos & derivados , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Activación Transcripcional
3.
Cell Cycle ; 8(24): 4138-46, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19946213

RESUMEN

The circadian clock regulates biological processes from gene expression to organism behavior in a precise, sustained rhythm that is generated at the unicellular level by coordinated function of interlocked transcriptional feedback loops and post-translational modifications of core clock proteins. CLOCK phosphorylation regulates transcriptional activity, cellular localization and stability; however little is known about the specific residues and enzymes involved. We have identified a conserved cluster of serines that include, Ser431, which is a prerequisite phosphorylation site for the generation of BMAL dependent phospho-primed CLOCK and for the potential GSK-3 phosphorylation at Ser427. Mutational analysis and protein stability assays indicate that this serine cluster functions as a phospho-degron. Through the use of GSK-3 activators/inhibitors and kinase assays, we demonstrate that GSK-3beta regulates the degron site by increasing CLOCK phosphorylation/degradation, which correlates with an increase in the expression of CLOCK responsive promoters. Stabilization of phospho-deficient CLOCK delays the phase of oscillation in synchronized fibroblasts. This investigation begins the characterization of a complex phospho-regulatory site that controls the activity and degradation of CLOCK, a core transcription factor that is essential for circadian behavior.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Ritmo Circadiano/fisiología , Serina/metabolismo , Factores de Transcripción ARNTL/química , Factores de Transcripción ARNTL/genética , Secuencia de Aminoácidos/genética , Animales , Relojes Biológicos/fisiología , Proteínas CLOCK/química , Proteínas CLOCK/genética , Dominio Catalítico/genética , Línea Celular , Fibroblastos/metabolismo , Regulación de la Expresión Génica/fisiología , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Regiones Promotoras Genéticas/genética , Elementos Reguladores de la Transcripción/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética
4.
Cell Cycle ; 7(5): 623-30, 2008 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18239466

RESUMEN

Cell signaling pathways induce Sp1 phosphorylation, which allows for the upregulation of Sp1-dependent genes that control cell growth, cell-cycle progression, survival and tumorigenesis. Sp1 activity is under constitutive repression through the sumoylation of Lysine-16, and Lysine-16 dependent N-terminal cleavage relieves this repression. The present investigation probes further into the mechanisms of Sp1 processing, desumoylation, and degradation to reveal that phosphorylation is the major driving force behind these coupled activities. The first 7 amino acid residues of Sp1 enhance the accessibility of Lysine-16 to the homologous modifiers SUMO-1 and ubiquitin; and Serine-7 specifically enhances ubiquitinylation. Our data show that Serine-59 regulates Sp1 proteolytic processing, and thereby provides a mechanism for the upregulation of Sp1-dependent transcription by CyclinA/cdk2 phosphorylation of Serine-59. Sp1 activators, forskolin and PMA, enhance Sp1 processing in MCFE cells through distinct signaling pathways. PKC, ERK, and ERBB2 kinase inhibitors suppress PMA induction of Sp1 and the specific isozyme PKCalpha enhances Sp1 cleavage. Sp1 contains several NFkappaB2-like proteolytic processing components including a functional phosphorylation-dependent beta-TrCP binding motif. From these data, we propose a model by which cell-cycle and mitotic kinases induce Sp1 proteolytic processing resulting in a desumoylated, derepressed and unstable Sp1 product.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factor de Transcripción Sp1/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Proteína Quinasa C-alfa/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Transcripción Sp1/química , Acetato de Tetradecanoilforbol/farmacología
5.
J Biol Chem ; 281(9): 5567-74, 2006 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-16407261

RESUMEN

Sp1 is a ubiquitously expressed transcription factor that binds GC-rich cis elements. Many posttranslational modifications have been implicated in the regulation of Sp1 activity. We now provide evidence for a novel mechanism of Sp1 regulation involving the small ubiquitin-like modifier (SUMO-1). Western blot analysis revealed a high molecular mass Sp1 of 125 kDa that is stabilized by a selective SUMO hydrolase inhibitor and destabilized by a specific SUMO-1 hydrolase. The covalent modification of Sp1 by endogenous SUMO-1 and SUMO-1 that has been fused to green fluorescent protein was demonstrated using transient transfection assays. A high probability sumoylation consensus motif, VK(16)IE(18), is located within the N-terminal negative regulatory domain of Sp1. Either arginine substitution for lysine 16 (Sp1(K16R)) or alanine substitution for glutamic acid 18 (Sp1(E18A)), abrogated Sp1 sumoylation. In vitro SUMO-1 covalently bound affinity-purified GST-Sp1, but not GST-Sp1(K16R). In vivo Sp1 was determined to be N-terminally cleaved, while Sp1(K16R) could not be cleaved indicating that sumoylation and cleavage are coupled through the key regulatory lysine 16. This coupling was evident by the demonstration of an inverse relationship between cellular SUMO-modified Sp1 and N-terminally cleaved Sp1. Compared with Sp1, sumoylation-deficient Sp1(E18A) exhibited enhanced cleavage and was a better transcriptional activator, while constitutively SUMO-1-modified Sp1 was deficient in proteolytic processing and repressed Sp1 transcriptional activity. The repressive effect of sumoylation on Sp1 activity is emphasized through the use of a GAL4 based transactivation assay. A model is proposed defining a mechanism by which sumoylation preserves the integrity of a negative regulatory domain thereby allowing for the inhibition of Sp-dependent transcription.


Asunto(s)
Proteína SUMO-1/metabolismo , Factor de Transcripción Sp1/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Animales , Línea Celular , Humanos , Hidrolasas/antagonistas & inhibidores , Hidrolasas/metabolismo , Lisina/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína SUMO-1/genética , Factor de Transcripción Sp1/química , Factor de Transcripción Sp1/genética
6.
Cell Signal ; 17(2): 153-66, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15494207

RESUMEN

Sp3 is a ubiquitously expressed member of the Sp family of transcription factors that encodes three proteins, Sp3, M1 and M2, with differing capacities to stimulate or repress transcription. As part of ongoing efforts to study the functions of Sp3 isoforms, we employed a yeast "two-hybrid" screen to identify Sp3-binding proteins. This screen resulted in the identification of Ubc9, a SUMO-1 conjugating enzyme, as an M2-binding protein, and consistent with these results sequence analyses identified consensus sumoylation motifs within several Sp family members. Western blots probed with anti-Sp3 detected a high molecular weight Sp3 isoform that is stabilized by a SUMO-1 hydrolase inhibitor, and this protein is also bound by anti-SUMO-1 antiserum. Transient transfection assays with epitope-tagged-SUMO-1 and GFP-SUMO-1 fusion proteins confirmed that Sp3, M1 and M2 proteins are sumoylated in vivo. Substitution of arginine for lysine at one putative site of sumoylation, lysine(551), blocked sumoylation of all Sp3 isoforms in vivo and led to a marginal increase in Sp3-mediated trans-activation in insect and mammalian cells. In contrast, introduction of this amino acid substitution within M1 converted it into a potent transcriptional trans-activator. We conclude that Sp3 isoforms are sumoylated in vivo and this post-translational modification plays an important role in the regulation of Sp3-mediated transcription.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Ácidos Hidroxámicos/farmacología , Proteína SUMO-1/metabolismo , Factores de Transcripción/metabolismo , Sustitución de Aminoácidos , Animales , Western Blotting , Células COS , Línea Celular , Línea Celular Tumoral , Núcleo Celular/química , Núcleo Celular/metabolismo , Chlorocebus aethiops , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Inhibidores Enzimáticos/farmacología , Etilmaleimida/química , Humanos , Inmunohistoquímica , Lisina/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/genética , Proteína de la Leucemia Promielocítica , Antígeno Prostático Específico/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína SUMO-1/genética , Factor de Transcripción Sp1/química , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp3 , Tetrahidrofolato Deshidrogenasa/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Activación Transcripcional/efectos de los fármacos , Transfección , Proteínas Supresoras de Tumor , Técnicas del Sistema de Dos Híbridos , Enzimas Ubiquitina-Conjugadoras/metabolismo
7.
J Virol ; 76(6): 2990-6, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11861864

RESUMEN

Human cytomegalovirus (HCMV) immediate-early protein IE1/IE72 is involved in undermining many cellular processes including cell cycle regulation, apoptosis, nuclear architecture, and gene expression. The multifunctional nature of IE72 suggests that posttranslational modifications may modulate its activities. IE72 is a phosphoprotein and has intrinsic kinase activity (S. Pajovic, E. L. Wong, A. R. Black, and J. C. Azizkhan, Mol. Cell. Biol. 17:6459-6464, 1997). We now demonstrate that IE72 is covalently conjugated to the small ubiquitin-like modifier (SUMO-1). SUMO-1 is an 11.5-kDa protein that is conjugated to multiple proteins and has been reported to exhibit multiple effects, including modulation of protein stability, subcellular localization, and gene expression. A covalently modified protein migrating at approximately 92 kDa, which is stabilized by a SUMO-1 hydrolase inhibitor, is revealed by Western blotting with anti-IE72 of lysates from cells infected with HCMV or cells expressing IE72. SUMO modification of IE72 was confirmed by immunoprecipitation with anti-IE72 and anti-SUMO-1 followed by Western blotting with anti-SUMO-1 and anti-IE72, respectively. Lysine 450 is within a sumoylation consensus site (I,V,L)KXE; changing lysine 450 to arginine by point mutation abolishes SUMO-1 modification of IE72. Inhibition of protein phosphatase 1 and 2A, which increases the phosphorylation of IE72, suppresses the formation of SUMO-1-IE72 conjugates. Both wild-type IE72 and IE72(K450R) localize to nuclear PML oncogenic domains and disrupt them. Studies of protein stability, transactivation, and complementation of IE72-deficient HCMV (CR208) have revealed no significant differences between wild-type IE72 and IE72(K450R).


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Regulación Viral de la Expresión Génica , Proteínas Inmediatas-Precoces/metabolismo , Proteína SUMO-1/metabolismo , Proteínas Virales , Secuencia de Aminoácidos , Western Blotting , Línea Celular , Humanos , Proteínas Inmediatas-Precoces/genética , Datos de Secuencia Molecular , Pruebas de Precipitina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...