Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 16108, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31695083

RESUMEN

Plasticity in plant dispersal traits can maximise the ability of a plant species to survive in stressful environments during colonization. Aethionema arabicum (Brassicaceae) is a dimorphic annual species that is hypothesized to survive stressful conditions during colonization due to adaptive plasticity in life-phase (vegetative vs sexual) and fruit morph (dehiscent [DEH] vs indehiscent fruits [IND]). We tested for adaptive plasticity in life-phase and fruit morphs along laboratory environmental stress gradients found in the natural habitats of Ae. arabicum. We considered optimal environmental conditions (750-2000 m above sea level) to be those that resulted in the following fitness parameters: higher biomass and a higher total number of fruits compared to stressful habitats. We found evidence of plasticity in life-phase and fruit-morph along a stressful environmental gradient. High hydrothermal stress proportionally increased the number of dehiscent morphs and non-dormant seeds germinating in autumn. This offsets natural phenology towards dry and cold winter (less hydrothermal stress), yielding fewer fruits that dehisce in the next generation. We conclude that the plastic responses of Ae. arabicum to natural stress gradients constitute a strategy of long-term adaptive benefits and favouring potential pathways of colonisation of the optimal habitat.


Asunto(s)
Brassicaceae/crecimiento & desarrollo , Brassicaceae/fisiología , Adaptación Fisiológica , Ecosistema , Frutas/crecimiento & desarrollo , Germinación , Semillas/crecimiento & desarrollo , Semillas/fisiología , Estrés Fisiológico
2.
New Phytol ; 221(3): 1434-1446, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30230555

RESUMEN

Heteromorphic diaspores (fruits and seeds) are an adaptive bet-hedging strategy to cope with spatiotemporally variable environments, particularly fluctuations in favourable temperatures and unpredictable precipitation regimes in arid climates. We conducted comparative analyses of the biophysical and ecophysiological properties of the two distinct diaspores (mucilaginous seed (M+ ) vs indehiscent (IND) fruit) in the dimorphic annual Aethionema arabicum (Brassicaceae), linking fruit biomechanics, dispersal aerodynamics, pericarp-imposed dormancy, diaspore abscisic acid (ABA) concentration, and phenotypic plasticity of dimorphic diaspore production to its natural habitat and climate. Two very contrasting dispersal mechanisms of the A. arabicum dimorphic diaspores were revealed. Dehiscence of large fruits leads to the release of M+ seed diaspores, which adhere to substrata via seed coat mucilage, thereby preventing dispersal (antitelechory). IND fruit diaspores (containing nonmucilaginous seeds) disperse by wind or water currents, promoting dispersal (telechory) over a longer range. The pericarp properties confer enhanced dispersal ability and degree of dormancy on the IND fruit morph to support telechory, while the M+ seed morph supports antitelechory. Combined with the phenotypic plasticity to produce more IND fruit diaspores in colder temperatures, this constitutes a bet-hedging survival strategy to magnify the prevalence in response to selection pressures acting over hilly terrain.


Asunto(s)
Adaptación Fisiológica , Fenómenos Biofísicos , Brassicaceae/fisiología , Frutas/fisiología , Dispersión de Semillas/fisiología , Semillas/fisiología , Fenómenos Biomecánicos , Ecosistema , Germinación/fisiología , Suelo , Agua , Viento
3.
Nat Commun ; 8(1): 1868, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29192192

RESUMEN

The biomechanical and ecophysiological properties of plant seed/fruit structures are fundamental to survival in distinct environments. Dispersal of fruits with hard pericarps (fruit coats) encasing seeds has evolved many times independently within taxa that have seed dispersal as their default strategy. The mechanisms by which the constraint of a hard pericarp determines germination timing in response to the environment are currently unknown. Here, we show that the hard pericarp of Lepidium didymum controls germination solely by a biomechanical mechanism. Mechanical dormancy is conferred by preventing full phase-II water uptake of the encased non-dormant seed. The lignified endocarp has biomechanically and morphologically distinct regions that serve as predetermined breaking zones. This pericarp-imposed mechanical dormancy is released by the activity of common fungi, which weaken these zones by degrading non-lignified pericarp cells. We propose that the hard pericarp with this biomechanical mechanism contributed to the global distribution of this species in distinct environments.


Asunto(s)
Ascomicetos/fisiología , Frutas/fisiología , Lepidium/fisiología , Latencia en las Plantas/fisiología , Semillas/fisiología , Fenómenos Biomecánicos , Cladosporium/fisiología , Código de Barras del ADN Taxonómico , Frutas/microbiología , Hongos , Germinación , Lepidium/microbiología , Micelio/fisiología , Dispersión de Semillas , Semillas/microbiología , Agua
4.
Plant Physiol ; 172(3): 1691-1707, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27702842

RESUMEN

Understanding how plants cope with changing habitats is a timely and important topic in plant research. Phenotypic plasticity describes the capability of a genotype to produce different phenotypes when exposed to different environmental conditions. In contrast, the constant production of a set of distinct phenotypes by one genotype mediates bet hedging, a strategy that reduces the temporal variance in fitness at the expense of a lowered arithmetic mean fitness. Both phenomena are thought to represent important adaptation strategies to unstable environments. However, little is known about the underlying mechanisms of these phenomena, partly due to the lack of suitable model systems. We used phylogenetic and comparative analyses of fruit and seed anatomy, biomechanics, physiology, and environmental responses to study fruit and seed heteromorphism, a typical morphological basis of a bet-hedging strategy of plants, in the annual Brassicaceae species Aethionema arabicum Our results indicate that heteromorphism evolved twice within the Aethionemeae, including once for the monophyletic annual Aethionema clade. The dimorphism of Ae. arabicum is associated with several anatomic, biomechanical, gene expression, and physiological differences between the fruit and seed morphs. However, fruit ratios and numbers change in response to different environmental conditions. Therefore, the life-history strategy of Ae. arabicum appears to be a blend of bet hedging and plasticity. Together with the available genomic resources, our results pave the way to use this species in future studies intended to unravel the molecular control of heteromorphism and plasticity.


Asunto(s)
Brassicaceae/embriología , Frutas/embriología , Semillas/embriología , Brassicaceae/anatomía & histología , Brassicaceae/genética , Brassicaceae/ultraestructura , Regulación hacia Abajo/genética , Frutas/genética , Frutas/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes del Desarrollo , Genes de Plantas , Germinación/genética , Modelos Biológicos , Fenotipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dispersión de Semillas , Semillas/genética , Semillas/ultraestructura , Homología de Secuencia de Aminoácido
5.
Proc Natl Acad Sci U S A ; 111(34): E3571-80, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25114251

RESUMEN

Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the delay of germination 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Lepidium sativum/crecimiento & desarrollo , Lepidium sativum/genética , Arabidopsis/fisiología , Fenómenos Biomecánicos , Secuencia Conservada , Diploidia , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Germinación/genética , Germinación/fisiología , Giberelinas/metabolismo , Lepidium sativum/fisiología , Datos de Secuencia Molecular , Mutación , Latencia en las Plantas/genética , Latencia en las Plantas/fisiología , Plantas Modificadas Genéticamente , Semillas/crecimiento & desarrollo , Temperatura
6.
Plant Physiol ; 161(4): 1903-17, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23426197

RESUMEN

Seed dormancy is a block to the completion of germination of an intact viable seed under favorable conditions and is an adaptive and agronomically important trait. Thus, elucidating conserved features of dormancy mechanisms is of great interest. The worldwide-distributed genus Lepidium (Brassicaceae) is well suited for cross-species comparisons investigating the origin of common or specific early-life-history traits. We show here that homologs of the seed dormancy-specific gene delay of germination1 (DOG1) from Arabidopsis (Arabidopsis thaliana) are widespread in the genus Lepidium. The highly dormant Lepidium papillosum is a polyploid species and possesses multiple structurally diversified DOG1 genes (LepaDOG1), some being expressed in seeds. We used the largely elongated and well-structured infructescence of L. papillosum for studying primary dormancy induction during seed development and maturation with high temporal resolution. Using simultaneous germination assays and marker protein expression detection, we show that LepaDOG1 proteins are expressed in seeds during maturation prior to dormancy induction. Accumulation of LepaDOG1 takes place in seeds that gain premature germinability before and during the seed-filling stage and declines during the late maturation and desiccation phase when dormancy is induced. These analyses of the Lepidium DOG1 genes and their protein expression patterns highlight similarities and species-specific differences of primary dormancy induction mechanism(s) in the Brassicaceae.


Asunto(s)
Evolución Molecular , Genes de Plantas/genética , Lepidium/crecimiento & desarrollo , Lepidium/genética , Latencia en las Plantas/genética , Proteínas de Plantas/genética , Semillas/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Brassicaceae/genética , Cromosomas de las Plantas/genética , Clonación Molecular , Frutas/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Lepidium/anatomía & histología , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/metabolismo , Semillas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA