Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cladistics ; 40(2): 181-191, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37824277

RESUMEN

Informative and consistent taxonomy above the species level is essential to communication about evolution, biodiversity and conservation, and yet the practice of taxonomy is considered opaque and subjective by non-taxonomist scientists and the public alike. While various proposals have tried to make the basis for the ranking and inclusiveness of taxa more transparent and objective, widespread adoption of these ideas has lagged. Here, we present TaxonomR, an interactive online decision-support tool to evaluate alternative taxonomic classifications. This tool implements an approach that quantifies the criteria commonly used in taxonomic treatments and allows the user to interactively manipulate weightings for different criteria to compare scores for taxonomic groupings under those weights. We use the butterfly taxon Argynnis to demonstrate how different weightings applied to common taxonomic criteria result in fundamentally different genus-level classifications that are predominantly used in different continents and geographic regions. These differences are objectively compared and quantified using TaxonomR to evaluate the kinds of criteria that have been emphasized in earlier classifications, and the nature of the support for current alternative taxonomic arrangements. The main role of TaxonomR is to make taxonomic decisions transparent via an explicit prioritization scheme. TaxonomR is not a prescriptive application. Rather, it aims to be a tool for facilitating our understanding of alternative taxonomic classifications that can, in turn, potentially support global harmony in biodiversity assessments through evidence-based discussion and community-wide resolution of historically entrenched taxonomic tensions.


Asunto(s)
Biodiversidad , Filogenia
2.
Mol Phylogenet Evol ; 183: 107758, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36907224

RESUMEN

The swallowtail genus Papilio (Lepidoptera: Papilionidae) is species rich, distributed worldwide, and has broad morphological habits and ecological niches. Because of its elevated species richness, it has been historically difficult to reconstruct a densely sampled phylogeny for this clade. Here we provide a taxonomic working list for the genus, resulting in 235 Papilio species, and assemble a molecular dataset of seven gene fragments representing ca. 80% of the currently described diversity. Phylogenetic analyses reconstructed a robust tree with highly supported relationships within subgenera, although a few nodes in the early history of the Old World Papilio remain unresolved. Contrasting with previous results, we found that Papilio alexanor is sister to all Old World Papilio and that the subgenus Eleppone is no longer monotypic. The latter includes the recently described Fijian Papilio natewa with the Australian Papilio anactus and is sister to subgenus Araminta (formerly included in subgenus Menelaides) occurring in Southeast Asia. Our phylogeny also includes rarely studied (P. antimachus, P. benguetana) or endangered species (P. buddha, P. chikae). Taxonomic changes resulting from this study are elucidated. Molecular dating and biogeographic analyses indicate that Papilio originated ca. 30 million years ago (Oligocene), in a northern region centered on Beringia. A rapid early Miocene radiation in the Paleotropics is revealed within Old World Papilio, potentially explaining their low early branch support. Most subgenera originated in the early to middle Miocene followed by synchronous southward biogeographic dispersals and repeated local extirpations in northern latitudes. This study provides a comprehensive phylogenetic framework for Papilio with clarification of subgeneric systematics and species taxonomic changes enumerated, which will facilitate further studies to address questions on their ecology and evolutionary biology using this model clade.


Asunto(s)
Mariposas Diurnas , Animales , Filogenia , Australia , Mariposas Diurnas/genética , Evolución Biológica , Asia Sudoriental
3.
Evol Appl ; 15(11): 1749-1765, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36426133

RESUMEN

Diverse geographic, environmental, and ecological factors affect gene flow and adaptive genomic variation within species. With recent advances in landscape ecological modelling and high-throughput DNA sequencing, it is now possible to effectively quantify and partition their relative contributions. Here, we use landscape genomics to identify determinants of genomic differentiation in the forest tent caterpillar, Malacosoma disstria, a widespread and irruptive pest of numerous deciduous tree species in North America. We collected larvae from multiple populations across Eastern Canada, where the species experiences a diversity of environmental gradients and feeds on a number of different host tree species, including trembling aspen (Populus tremuloides), sugar maple (Acer saccharum), red oak (Quercus rubra), and white birch (Betula papyrifera). Using a combination of reciprocal causal modelling (RCM) and distance-based redundancy analyses (dbRDA), we show that differentiation of thousands of genome-wide single nucleotide polymorphisms (SNPs) among individuals is best explained by a combination of isolation by distance, isolation by environment (spatial variation in summer temperatures and length of the growing season), and differences in host association. Configuration of suitable habitat inferred from ecological niche models was not significantly related to genomic differentiation, suggesting that M. disstria dispersal is agnostic with respect to habitat quality. Although population structure was not discretely related to host association, our modelling framework provides the first molecular evidence of host-associated differentiation in M. disstria, congruent with previous documentation of reduced growth and survival of larvae moved between natal host species. We conclude that ecologically mediated selection is contributing to variation within M. disstria, and that divergent adaptation related to both environmental conditions and host association should be considered in ongoing research and management of this important forest pest.

4.
Genome Biol Evol ; 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35668612

RESUMEN

Insects have developed various adaptations to survive harsh winter conditions. Among freeze-intolerant species, some produce "antifreeze proteins" (AFPs) that bind to nascent ice crystals and inhibit further ice growth. Such is the case of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), a destructive North American conifer pest that can withstand temperatures below -30°C. Despite the potential importance of AFPs in the adaptive diversification of Choristoneura, genomic tools to explore their origins have until now been limited. Here we present a chromosome-scale genome assembly for C. fumiferana, which we used to conduct comparative genomic analyses aimed at reconstructing the evolutionary history of tortricid AFPs. The budworm genome features 16 genes homologous to previously reported C. fumiferana AFPs (CfAFPs), 15 of which map to a single region on chromosome 18. Fourteen of these were also detected in five congeneric species, indicating Choristoneura AFP diversification occurred before the speciation event that led to C. fumiferana. Although budworm AFPs were previously considered unique to the genus Choristoneura, a search for homologs targeting recently sequenced tortricid genomes identified seven CfAFP-like genes in the distantly related Notocelia uddmanniana. High structural similarity between Notocelia and Choristoneura AFPs suggests a common origin, despite the absence of homologs in three related tortricids. Interestingly, one Notocelia AFP formed the C-terminus of a "zonadhesin-like" protein, possibly representing the ancestral condition from which tortricid AFPs evolved. Future work should clarify the evolutionary path of AFPs between Notocelia and Choristoneura and assess the role of the "zonadhesin-like" protein as precursor of tortricid AFPs.

5.
Mol Phylogenet Evol ; 171: 107465, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35351633

RESUMEN

Divergence times underpin diverse evolutionary hypotheses, but conflicting age estimates across studies diminish the validity of such hypotheses. These conflicts have continued to grow as large genomics datasets become commonplace and analytical approaches proliferate. To provide more stable temporal intervals, age estimations should be interpreted in the context of both the type of data and analysis being used. Here, we use multispecies coalescent (MSC), concatenation-based, and categorical data transformation approaches on genome-wide SNP data to infer divergence ages within the Papilio glaucus group of tiger swallowtail butterflies in North America. While the SNP data supported previously recognized relationships within the group (P. multicaudata, ((P. eurymedon, P. rutulus), (P. appalachiensis, P. canadensis, P. glaucus))), estimated ages of divergence between the major lineages varied substantially among analyses. MSC produced wide credibility intervals particularly for deeper nodes, reflecting uncertainty in the coalescence times as a possible result of conflicting signal across gene trees. Concatenation, in contrast, gave narrower and more well-defined posterior distributions for the node ages; however, the higher precision of these time estimates is a likely artefact due to more simplistic underlying assumptions of this approach that do not account for conflict among gene trees. Transformed categorical data analysis gave the least precise and the most variable results, with its simple substitution model coupled with a relaxed clock tending to produce spurious results from large genome-wide datasets. While median node ages differed considerably between analyses (∼2 Mya between MSC and concatenation-based results), their corresponding credibility intervals nonetheless highlight common temporal patterns for deeper divergences in the group as well as finer-scale phylogeography. Age distributions across analyses support an origin of the group during the warm period of the early to mid-Pliocene. Late Pliocene climate aridification and cooling drove divergence between eastern and western groups that further diversified during the period of repeated Pleistocene glaciations. Our results provide a structured comparative assessment of divergence time estimates and evolutionary relationships in a well-studied group of butterflies, and support better understanding of analytical biases in divergence time estimation.


Asunto(s)
Mariposas Diurnas , Animales , Evolución Biológica , Mariposas Diurnas/genética , Genoma , Filogenia , Filogeografía
6.
Mol Ecol ; 31(8): 2400-2417, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35212068

RESUMEN

Recent advances in both genomics and ecological modelling present new, multidisciplinary opportunities for resolving species boundaries and understanding the mechanisms that maintain their integrity in regions of contact. Here, we use a combination of high-throughput DNA sequencing and ecological niche modelling to resolve species boundaries and niche divergence within the Speyeria atlantis-hesperis (Lepidoptera: Nymphalidae) complex, a confusing group of North American butterflies. This complex is notorious for its muddled species delimitations, morphological ambiguity, and extensive mitonuclear discordance. Our admixture and multispecies coalescent-based analyses of single nucleotide polymorphisms identified substantial divergences between S. atlantis and S. hesperis in areas of contact, as well as between distinct northern and southern lineages within S. hesperis. Our results also provide evidence of past introgression relating to another species, S. zerene, which previous work has shown to be more distantly related to the S. atlantis-hesperis complex. We then used ecological models to predict habitat suitability for each of the three recovered genomic lineages in the S. atlantis-hesperis complex and assessed their pairwise niche divergence. These analyses resolved that these three lineages are significantly diverged in their respective niches and are not separated by discontinuities in suitable habitat that might present barriers to gene flow. We therefore infer that ecologically-mediated selection resulting in disparate habitat associations is a principal mechanism reinforcing their genomic integrity. Overall, our results unambiguously support significant evolutionary and ecological divergence between the northern and southern lineages of S. hesperis, sufficient to recognize the southern evolutionary lineage as a distinct species, called S. nausicaa based on taxonomic priority.


Asunto(s)
Mariposas Diurnas , Animales , Evolución Biológica , Mariposas Diurnas/genética , Ecosistema , Flujo Génico , Genómica , Filogenia
7.
Evol Appl ; 15(1): 166-180, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35126654

RESUMEN

Temporal separation of reproductive timing can contribute to species diversification both through allochronic speciation and later reinforcement of species boundaries. Such phenological differences are an enigmatic component of evolutionary divergence between two major forest defoliator species of the spruce budworm complex: Choristoneura fumiferana and C. occidentalis. While these species interbreed freely in laboratory settings, natural hybridization rates have not been reliably quantified due to their indistinguishable morphology. To assess whether temporal isolation is contributing to reproductive isolation, we collected adult individuals throughout their expected zone of sympatry in western Canada at 10-day intervals over two successive years, assigning taxonomic identities using thousands of single nucleotide polymorphisms. We found unexpectedly broad sympatry between C. fumiferana and C. occidentalis biennis and substantial overlap of regional flight periods. However, flight period divergence was much more apparent on a location-by-location basis, highlighting the importance of considering spatial scale in these analyses. Phenological comparisons were further complicated by the biennial life cycle of C. o. biennis, the main subspecies of C. occidentalis in the region, and the occasional occurrence of the annually breeding subspecies C. o. occidentalis. Nonetheless, we demonstrate that biennialism is not a likely contributor to reproductive isolation within the species complex. Overall, interspecific F1 hybrids comprised 2.9% of sequenced individuals, confirming the genomic distinctiveness of C. fumiferana and C. occidentalis, while also showing incomplete reproductive isolation of lineages. Finally, we used F ST-based outlier and genotype-environment association analyses to identify several genomic regions under putative divergent selection. These regions were disproportionately located on the Z linkage region of C. fumiferana, and contained genes, particularly antifreeze proteins, that are likely to be associated with overwintering success and diapause. In addition to temporal isolation, we conclude that other mechanisms, including ecologically mediated selection, are contributing to evolutionary divergence within the spruce budworm species complex.

8.
Mol Ecol Resour ; 22(3): 1149-1167, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34637588

RESUMEN

Genome sequencing methods and assembly tools have improved dramatically since the 2013 publication of draft genome assemblies for the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). We conducted proximity ligation library sequencing and scaffolding to improve contiguity, and then used linkage mapping and recent bioinformatic tools for correction and further improvement. The new assemblies have dramatically improved contiguity and gaps compared to the originals: N50 values increased 26- to 36-fold, and the number of gaps were reduced by half. Ninety per cent of the content of the assemblies is now contained in 12 and 11 scaffolds for the female and male assemblies, respectively. Based on linkage mapping information, the 12 largest scaffolds in both assemblies represent all 11 autosomal chromosomes and the neo-X chromosome. These assemblies now have nearly chromosome-sized scaffolds and will be instrumental for studying genomic architecture, chromosome evolution, population genomics, functional genomics, and adaptation in this and other pest insects. We also identified regions in two chromosomes, including the ancestral-X portion of the neo-X chromosome, with elevated differentiation between northern and southern Canadian populations.


Asunto(s)
Escarabajos , Pinus , Gorgojos , Animales , Canadá , Cromosomas , Escarabajos/genética , Genómica , Pinus/genética , Gorgojos/genética
9.
PeerJ ; 9: e12382, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34754626

RESUMEN

Dispersal flights by the mountain pine beetle have allowed range expansion and major damage to pine stands in western Canada. We asked what the genetic and transcriptional basis of mountain pine beetle dispersal capacity is. Using flight mills, RNA-seq and a targeted association study, we compared strong-flying, weak-flying, and non-flying female beetles from the recently colonized northern end of their range. Nearly 3,000 genes were differentially expressed between strong and weak flying beetles, while weak fliers and nonfliers did not significantly differ. The differentially expressed genes were mainly associated with lipid metabolism, muscle maintenance, oxidative stress response, detoxification, endocrine function, and flight behavior. Three variant loci, two in the coding region of genes, were significantly associated with flight capacity but these genes had no known functional link to flight. Several differentially expressed gene systems may be important for sustained flight, while other systems are downregulated during dispersal and likely to conserve energy before host colonization. The candidate genes and SNPs identified here will inform further studies and management of mountain pine beetle, as well as contribute to understanding the mechanisms of insect dispersal flights.

10.
Nat Commun ; 12(1): 354, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441560

RESUMEN

The mega-diversity of herbivorous insects is attributed to their co-evolutionary associations with plants. Despite abundant studies on insect-plant interactions, we do not know whether host-plant shifts have impacted both genomic adaptation and species diversification over geological times. We show that the antagonistic insect-plant interaction between swallowtail butterflies and the highly toxic birthworts began 55 million years ago in Beringia, followed by several major ancient host-plant shifts. This evolutionary framework provides a valuable opportunity for repeated tests of genomic signatures of macroevolutionary changes and estimation of diversification rates across their phylogeny. We find that host-plant shifts in butterflies are associated with both genome-wide adaptive molecular evolution (more genes under positive selection) and repeated bursts of speciation rates, contributing to an increase in global diversification through time. Our study links ecological changes, genome-wide adaptations and macroevolutionary consequences, lending support to the importance of ecological interactions as evolutionary drivers over long time periods.


Asunto(s)
Mariposas Diurnas/genética , Ecosistema , Evolución Molecular , Genoma de los Insectos/genética , Animales , Mariposas Diurnas/clasificación , Mariposas Diurnas/fisiología , Estudio de Asociación del Genoma Completo/métodos , Geografía , Interacciones Huésped-Parásitos , Filogenia , Plantas/clasificación , Plantas/parasitología , Especificidad de la Especie , Factores de Tiempo
11.
Trop Med Infect Dis ; 5(4)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33218113

RESUMEN

Lyme disease-causing Borrelia burgdorferi has been reported in 10-19% of Ixodes ticks from Alberta, Canada, where the tick vector Ixodes scapularis is at the northwestern edge of its range. However, the presence of Borrelia has not been verified independently, and the bacterial microbiome of these ticks has not been described. We performed 16S rRNA bacterial surveys on female I. scapularis from Alberta that were previously qPCR-tested in a Lyme disease surveillance program. Both 16S and qPCR methods were concordant for the presence of Borrelia. The 16S studies also provided a profile of associated bacteria that showed the microbiome of I. scapularis in Alberta was similar to other areas of North America. Ticks that were qPCR-positive for Borrelia had significantly greater bacterial diversity than Borrelia-negative ticks, on the basis of generalized linear model testing. This study adds value to ongoing tick surveillance and is a foundation for deeper understanding of tick microbial ecology and disease transmission in a region where I. scapularis range expansion, induced by climate and land use changes, is likely to have increasing public health implications.

12.
Mol Phylogenet Evol ; 152: 106921, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32758535

RESUMEN

Genomics has revolutionized our understanding of hybridization and introgression, but most of the early evidence for these processes came from studies of mitochondrial introgression. To expand these evolutionary insights from mitochondrial patterns, we evaluate phylogenetic discordance across the nuclear genomes of a hybridizing system, the Papilio machaon group of swallowtail butterflies. This species group contains three hybrid lineages (P. brevicauda, P. joanae, and P. m. kahli) that are geographically disjunct across North America and have complete fixation of a mitochondrial lineage that is otherwise primarily found in P. m. hudsonianus, a boreal subspecies of the Holarctic P. machaon. Genome-wide nuclear markers place the three hybrid lineages as a monophyletic group that is sister to P. polyxenes/P. zelicaon rather than P. machaon, although ancient hybridization between a subspecies of P. machaon and the ancestor of these three lineages is also shown by their greater nuclear affinity to P. m. hudsonianus than to other subspecies of P. machaon. Individuals from contemporary hybrid swarms in Alberta, where mitochondrial DNA fixation has not occurred, were more intermediate between their respective parent species, demonstrating diversity in mito-nuclear discordance following hybrid interactions. Our new phylogenetic findings for the P. machaon species group also include: subspecific paraphyly within P. machaon itself across its Holarctic distribution; paraphyly of P. zelicaon relative to P. polyxenes; and more divergent placement of a Mediterranean species, P. hospiton. These results provide the first comprehensive genomic evaluation of relationships within this species group and provide insight into the evolutionary dynamics of hybridization and mitochondrial introgression.


Asunto(s)
Mariposas Diurnas/clasificación , Mariposas Diurnas/genética , Mitocondrias/genética , Filogenia , Animales , Evolución Biológica , ADN Mitocondrial/genética , Genoma de los Insectos/genética , Hibridación Genética , América del Norte , Hibridación de Ácido Nucleico
13.
Mol Ecol ; 29(20): 3889-3906, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32810893

RESUMEN

Previous work in landscape genetics suggests that geographic isolation is of greater importance to genetic divergence than variation in environmental conditions. This is intuitive when configurations of suitable habitat are a dominant factor limiting dispersal and gene flow, but has not been thoroughly examined for habitat specialists with strong dispersal capability. Here, we evaluate the effects of geographic and environmental isolation on genetic divergence for a vagile invertebrate with high habitat specificity and a discrete dispersal life stage: Dod's Old World swallowtail butterfly, Papilio machaon dodi. In Canada, P. m. dodi are generally restricted to eroding habitat along major river valleys where their larval host plant occurs. A series of causal and linear mixed effects models indicate that divergence of genome-wide single nucleotide polymorphisms is best explained by a combination of environmental isolation (variation in summer temperatures) and geographic isolation (Euclidean distance). Interestingly, least-cost path and circuit distances through a resistance surface parameterized as the inverse of habitat suitability were not supported. This suggests that, although habitat associations of many butterflies are specific due to reproductive requirements, habitat suitability and landscape permeability are not equivalent concepts due to considerable adult vagility. We infer that divergent selection related to variation in summer temperatures has produced two genetic clusters within P. m. dodi, differing in voltinism and diapause propensity. Within the next century, temperatures are predicted to rise by amounts greater than the present-day difference between regions of the genetic clusters, potentially affecting the persistence of the northern cluster under continued climate change.


Asunto(s)
Mariposas Diurnas , Flujo Génico , Animales , Mariposas Diurnas/genética , Canadá , Ecosistema , Variación Genética , Especialización
14.
Ecol Evol ; 10(2): 914-927, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32015854

RESUMEN

The spruce budworm, Choristoneura fumiferana, is presumed to be panmictic across vast regions of North America. We examined the extent of panmixia by genotyping 3,650 single nucleotide polymorphism (SNP) loci in 1975 individuals from 128 collections across the continent. We found three spatially structured subpopulations: Western (Alaska, Yukon), Central (southeastern Yukon to the Manitoba-Ontario border), and Eastern (Manitoba-Ontario border to the Atlantic). Additionally, the most diagnostic genetic differentiation between the Central and Eastern subpopulations was chromosomally restricted to a single block of SNPs that may constitute an island of differentiation within the species. Geographic differentiation in the spruce budworm parallels that of its principal larval host, white spruce (Picea glauca), providing evidence that spruce budworm and spruce trees survived in the Beringian refugium through the Last Glacial Maximum and that at least two isolated spruce budworm populations diverged with spruce/fir south of the ice sheets. Gene flow in the spruce budworm may also be affected by mountains in western North America, habitat isolation in West Virginia, regional adaptations, factors related to dispersal, and proximity of other species in the spruce budworm species complex. The central and eastern geographic regions contain individuals that assign to Eastern and Central subpopulations, respectively, indicating that these barriers are not complete. Our discovery of previously undetected geographic and genomic structure in the spruce budworm suggests that further population modelling of this ecologically important insect should consider regional differentiation, potentially co-adapted blocks of genes, and gene flow between subpopulations.

15.
Ecol Evol ; 9(3): 1147-1159, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30805148

RESUMEN

Genetic surveys of the population structure of species can be used as resources for exploring their genomic architecture. By adjusting filtering assumptions, genome-wide single-nucleotide polymorphism (SNP) datasets can be reused to give new insights into the genetic basis of divergence and speciation without targeted resampling of specimens. Filtering only for missing data and minor allele frequency, we used a combination of principal components analysis and linkage disequilibrium network analysis to distinguish three cohorts of variable SNPs in the mountain pine beetle in western Canada, including one that was sex-linked and one that was geographically associated. These marker cohorts indicate genomically localized differentiation, and their detection demonstrates an accessible and intuitive method for discovering potential islands of genomic divergence without a priori knowledge of a species' genomic architecture. Thus, this method has utility for directly addressing the genomic architecture of species and generating new hypotheses for functional research.

16.
J Fish Biol ; 93(6): 1216-1228, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30367487

RESUMEN

Shads of the genus Alosa are essential to commercial fisheries across North America and Europe, but in some areas their species boundaries remain controversial. Traditional morphology-based taxonomy of Alosa spp. has relied heavily on the number of gill rakers and body proportions, but these can be highly variable. We use mitochondrial (mt)DNA (coI and cytb) and genome-wide single nucleotide polymorphisms (SNP) along with morphological characters to assess differentiation among endemic Ponto-Caspian shads in the Sea of Azov. Morphological species assignments based on gill-raker number were not congruent with genetic lineages shown by mtDNA and SNPs. Iterative analysis revealed that genetic lineages were associated with sampling location and several other morphometric traits (caudal peduncle depth, pre-anal length and head length). Phylogenetic analysis of the genus placed Ponto-Caspian Alosa spp. in the same evolutionary lineage as endangered Alosa spp. endemic to Greece, highlighting the importance of these findings to conservation management. We conclude that gill-raker number is not reliable for delimiting species of Alosa. This taxonomic uncertainty should be addressed by examining type material to provide a robust integrative classification for these commercially important fishes.


Asunto(s)
Peces/genética , Animales , Evolución Biológica , Tamaño Corporal , Citocromos b/química , Citocromos b/genética , ADN Mitocondrial/química , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Peces/anatomía & histología , Peces/clasificación , Branquias , Filogeografía , Polimorfismo de Nucleótido Simple , Especificidad de la Especie
17.
G3 (Bethesda) ; 8(8): 2539-2549, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-29950429

RESUMEN

Genome structure characterization can contribute to a better understanding of processes such as adaptation, speciation, and karyotype evolution, and can provide useful information for refining genome assemblies. We studied the genome of an important North American boreal forest pest, the spruce budworm, Choristoneura fumiferana, through a combination of molecular cytogenetic analyses and construction of a high-density linkage map based on single nucleotide polymorphism (SNP) markers obtained through a genotyping-by-sequencing (GBS) approach. Cytogenetic analyses using fluorescence in situ hybridization methods confirmed the haploid chromosome number of n = 30 in both sexes of C. fumiferana and showed, for the first time, that this species has a WZ/ZZ sex chromosome system. Synteny analysis based on a comparison of the Bombyx mori genome and the C. fumiferana linkage map revealed the presence of a neo-Z chromosome in the latter species, as previously reported for other tortricid moths. In this neo-Z chromosome, we detected an ABC transporter C2 (ABCC2) gene that has been associated with insecticide resistance. Sex-linkage of the ABCC2 gene provides a genomic context favorable to selection and rapid spread of resistance against Bacillus thuringiensis serotype kurstaki (Btk), the main insecticide used in Canada to control spruce budworm populations. Ultimately, the linkage map we developed, which comprises 3586 SNP markers distributed over 30 linkage groups for a total length of 1720.41 cM, will be a valuable tool for refining our draft assembly of the spruce budworm genome.


Asunto(s)
Cromosomas de Insectos/genética , Ligamiento Genético , Genoma de los Insectos , Lepidópteros/genética , Animales , Femenino , Proteínas de Insectos/genética , Resistencia a los Insecticidas , Masculino , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Polimorfismo de Nucleótido Simple , Sintenía
18.
Syst Biol ; 67(6): 940-964, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29438538

RESUMEN

In macroevolution, the Red Queen (RQ) model posits that biodiversity dynamics depend mainly on species-intrinsic biotic factors such as interactions among species or life-history traits, while the Court Jester (CJ) model states that extrinsic environmental abiotic factors have a stronger role. Until recently, a lack of relevant methodological approaches has prevented the unraveling of contributions from these 2 types of factors to the evolutionary history of a lineage. Herein, we take advantage of the rapid development of new macroevolution models that tie diversification rates to changes in paleoenvironmental (extrinsic) and/or biotic (intrinsic) factors. We inferred a robust and fully-sampled species-level phylogeny, as well as divergence times and ancestral geographic ranges, and related these to the radiation of Apollo butterflies (Parnassiinae) using both extant (molecular) and extinct (fossil/morphological) evidence. We tested whether their diversification dynamics are better explained by an RQ or CJ hypothesis, by assessing whether speciation and extinction were mediated by diversity-dependence (niche filling) and clade-dependent host-plant association (RQ) or by large-scale continuous changes in extrinsic factors such as climate or geology (CJ). For the RQ hypothesis, we found significant differences in speciation rates associated with different host-plants but detected no sign of diversity-dependence. For CJ, the role of Himalayan-Tibetan building was substantial for biogeography but not a driver of high speciation, while positive dependence between warm climate and speciation/extinction was supported by continuously varying maximum-likelihood models. We find that rather than a single factor, the joint effect of multiple factors (biogeography, species traits, environmental drivers, and mass extinction) is responsible for current diversity patterns and that the same factor might act differently across clades, emphasizing the notion of opportunity. This study confirms the importance of the confluence of several factors rather than single explanations in modeling diversification within lineages.


Asunto(s)
Evolución Biológica , Mariposas Diurnas/clasificación , Modelos Biológicos , Animales , Biodiversidad , Mariposas Diurnas/genética , Especiación Genética , Filogenia
19.
Mol Phylogenet Evol ; 123: 35-43, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29378247

RESUMEN

Mitogenomes are useful markers for phylogenetic studies across a range of taxonomic levels. Here, we focus on mitogenome variation across the tortricid moth genus Choristoneura and particularly the spruce budworm (Choristoneura fumiferana) species complex, a notorious pest group of North American conifer forests. Phylogenetic relationships of Tortricidae, representing two subfamilies, four tribes and nine genera, were analyzed using 21 mitogenomes. These included six newly-sequenced mitogenomes for species in the spruce budworm complex plus three additional Choristoneura species and 12 previously published mitogenomes from other tortricids and one from the Cossidae. We evaluated the phylogenetic informativeness of the mitogenomes and reconstructed a time-calibrated tree with fossil and secondary calibrations. We found that tortricid mitogenomes had conserved protein and ribosomal regions, and analysis of all protein-coding plus ribosomal genes together provided an efficient marker at any taxonomic rank. The time-calibrated phylogeny showed evolutionary convergence of conifer feeding within Choristoneura, with two independent lineages, the Nearctic spruce budworm complex and the Palearctic species Choristoneura murinana, both shifting onto conifers about 11 million years ago from angiosperms. These two host-plant shifts both occurred after the formation of boreal forest in the late Miocene. Haplotype diversification within the spruce budworm complex occurred in the last 4 million years, and is probably linked to the initial cooling cycles of the Northern Hemisphere in the Pliocene.


Asunto(s)
Herbivoria/fisiología , Mariposas Nocturnas/fisiología , Taiga , Tracheophyta/parasitología , Animales , Secuencia de Bases , Calibración , ADN Mitocondrial/genética , Genoma Mitocondrial , Mariposas Nocturnas/genética , Filogenia , Factores de Tiempo
20.
Mol Ecol ; 26(23): 6666-6684, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29055150

RESUMEN

Populations are often exposed to multiple sources of gene flow, but accounts are lacking of the population genetic dynamics that result from these interactions or their effects on local evolution. Using a genomic clines framework applied to 1,195 single nucleotide polymorphisms, we documented genomewide, locus-specific patterns of introgression between Choristoneura occidentalis biennis spruce budworms and two ecologically divergent relatives, C. o. occidentalis and Choristoneura fumiferana, that it interacts with at alternate boundaries of its range. We observe contrasting hybrid indexes between the two hybrid zones, no overlap in "gene-flow outliers" (clines showing relatively extreme extents or rates of locus-specific introgression) and variable linkage disequilibrium among those outliers. At the same time, correlated genomewide rates of introgression between zones suggest the presence of processes common to both boundaries. These findings highlight the contrasting population genetic dynamics that can occur at separate frontiers of a single population, while also suggesting that shared patterns may frequently accompany cases of divergence-with-gene-flow that involve a lineage in common. Our results point to potentially complex evolutionary outcomes for populations experiencing multiple sources of gene flow.


Asunto(s)
Flujo Génico , Genética de Población , Hibridación Genética , Lepidópteros/clasificación , Alberta , Animales , Colombia Británica , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Dinámica Poblacional , Saskatchewan
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...