Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Pharm ; 21(8): 3848-3865, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959127

RESUMEN

The cholecystokinin type 2 receptor (CCK2-R) represents an ideal target for cancer therapy since it is overexpressed in several tumors and is associated with poor prognosis. Nastorazepide (Z-360), a selective CCK2-R antagonist, has been widely investigated as a CCK2-R ligand for targeted therapy; however, its high hydrophobicity may represent a limit to cell selectivity and optimal in vivo biodistribution. Here, we present three new fluorescent Z-360 derivatives (IP-002G-Rho, IP-002L-Rho, and IP-002M-Rho) in which nastorazepide was linked, through spacers bearing different saccharides (glucose (G), lactose (L), and maltotriose (M)), to sulforhodamine B. A fourth compound (IP-002H-Rho) with no pendant sugar was also synthesized as a control. Through two-dimensional (2D) and three-dimensional (3D) in vitro studies, we evaluated the compound association with and selectivity for CCK2-R-overexpressing cells (A431-CCK2-R+) vs CCK2-R-underexpressing cells (A431 WT). 2D in vitro studies highlighted a progressive increase of IP-002x-Rho association with A431-CCK2-R+ cells according to the linker hydrophilicity, that is, maltotriose > lactose > glucose > hydrogen, with IP-002M-Rho showing a 2.4- and a 1.36-fold higher uptake than IP-002G-Rho and IP-002L-Rho, respectively. Unexpectedly, IP-002H-Rho showed a similar cell association to that of IP-002L-Rho but with no difference between the two tested cell lines. On the contrary, association with A431-CCK2-R+ cells as compared to the A431 WT was found to be 1.08-, 1.14-, and 1.37-fold higher for IP-002G-Rho, IP-002L-Rho, and IP-002M-Rho, respectively, proving IP-002M-Rho to be the best-performing compound, as also confirmed by competition studies. Trafficking studies on A431-CCK2-R+ cells incubated with IP-002M-Rho suggested the coexistence of receptor-mediated endocytosis and simple diffusion. On the contrary, a high and selective uptake of IP-002M-Rho by A431-CCK2-R+ cells only was observed on 3D scaffolds embedded with cells, underlining the importance of 3D models in in vitro preliminary evaluation.


Asunto(s)
Receptor de Colecistoquinina B , Humanos , Receptor de Colecistoquinina B/antagonistas & inhibidores , Receptor de Colecistoquinina B/metabolismo , Línea Celular Tumoral , Trisacáridos/química , Lactosa/análogos & derivados , Lactosa/química , Glucosa/metabolismo
2.
Biomimetics (Basel) ; 9(4)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38667229

RESUMEN

The treatment of bone defects is a clinical challenge. Bone tissue engineering is gaining interest as an alternative to current treatments, with the development of 3D porous structures (scaffolds) helpful in promoting bone regeneration by ensuring temporary functional support. In this work, methacrylated silk fibroin (SilMA) sponges were investigated as scaffolds for bone tissue engineering by exploiting the combination of physical (induced by NaCl salt during particulate leaching) and chemical crosslinking (induced by UV-light exposure) techniques. A biomimetic approach was adopted to better simulate the extracellular matrix of the bone by introducing either natural (mussel shell-derived) or synthetic-origin hydroxyapatite nanoparticles into the SilMA sponges. The obtained materials were characterized in terms of pore size, water absorption capability and mechanical properties to understand both the effect of the inclusion of the two different types of nanoparticles and the effect of the photocrosslinking. Moreover, the SilMA sponges were tested for their bioactivity and suitability for bone tissue engineering purposes by using osteosarcoma cells, studying their metabolism by an AlamarBlue assay and their morphology by scanning electron microscopy. Results indicate that photocrosslinking helps in obtaining more regular structures with bimodal pore size distributions and in enhancing the stability of the constructs in water. Moreover, the addition of naturally derived hydroxyapatite was observed to be more effective at activating osteosarcoma cell metabolism than synthetic hydroxyapatite, showing a statistically significant difference in the AlamarBlue measurement on day 7 after seeding. The methacrylated silk fibroin/hydroxyapatite nanocomposite sponges developed in this work were found to be promising tools for targeting bone regeneration with a sustainable approach.

3.
ACS Biomater Sci Eng ; 9(3): 1320-1331, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36848685

RESUMEN

Extrusion-based bioprinting is one of the most widespread technologies due to its affordability, wide range of processable materials, and ease of use. However, the formulation of new inks for this technique is based on time-consuming trial-and-error processes to establish the optimal ink composition and printing parameters. Here, a dynamic printability window was modeled for the assessment of the printability of polysaccharide blend inks of alginate and hyaluronic acid with the intent to build a versatile predictive tool to speed up the testing procedures. The model considers both the rheological properties of the blends (viscosity, shear thinning behavior, and viscoelasticity) and their printability (in terms of extrudability and the ability of forming a well-defined filament and detailed geometries). By imposing some conditions on the model equations, it was possible to define empirical bands in which the printability is ensured. The predictive capability of the built model was successfully verified on an untested blend of alginate and hyaluronic acid chosen to simultaneously optimize the printability index and minimize the size of the deposited filament.


Asunto(s)
Bioimpresión , Tinta , Bioimpresión/métodos , Ácido Hialurónico , Alginatos , Impresión Tridimensional
4.
JOR Spine ; 5(4): e1225, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36601376

RESUMEN

Intervertebral disc (IVD) degeneration (IDD) is the main contributor to chronic low back pain. To date, the present therapies mainly focus on treating the symptoms caused by IDD rather than addressing the problem itself. For this reason, researchers have searched for a suitable biomaterial to repair and/or regenerate the IVD. A promising candidate to fill this gap is silk, which has already been used as a biomaterial for many years. Therefore, this review aims first to elaborate on the different origins from which silk is harvested, the individual composition, and the characteristics of each silk type. Another goal is to enlighten why silk is so suitable as a biomaterial, discuss its functionalization, and how it could be used for tissue engineering purposes. The second part of this review aims to provide an overview of preclinical studies using silk-based biomaterials to repair the inner region of the IVD, the nucleus pulposus (NP), and the IVD's outer area, the annulus fibrosus (AF). Since the NP and the AF differ fundamentally in their structure, different therapeutic approaches are required. Consequently, silk-containing hydrogels have been used mainly to repair the NP, and silk-based scaffolds have been used for the AF. Although most preclinical studies have shown promising results in IVD-related repair and regeneration, their clinical transition is yet to come.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA