Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38794149

RESUMEN

Glioblastoma (GB) is the most aggressive and common primary malignant tumor of the brain and central nervous system. Without treatment, the average patient survival time is about six months, which can be extended to fifteen months with multimodal therapies. The chemoresistance observed in GB is, in part, attributed to the presence of a subpopulation of glioblastoma-like stem cells (GSCs) that are characterized by heightened tumorigenic capacity and chemoresistance. GSCs are situated in hypoxic tumor niches, where they sustain and promote the stem-like phenotype and have also been correlated with high chemoresistance. GSCs have the particularity of generating high levels of extracellular adenosine (ADO), which causes the activation of the A3 adenosine receptor (A3AR) with a consequent increase in the expression and activity of genes related to chemoresistance. Therefore, targeting its components is a promising alternative for treating GB. This analysis determined genes that were up- and downregulated due to A3AR blockades under both normoxic and hypoxic conditions. In addition, possible candidates associated with chemoresistance that were positively regulated by hypoxia and negatively regulated by A3AR blockades in the same condition were analyzed. We detected three potential candidate genes that were regulated by the A3AR antagonist MRS1220 under hypoxic conditions: LIMD1, TRIB2, and TGFB1. Finally, the selected markers were correlated with hypoxia-inducible genes and with the expression of adenosine-producing ectonucleotidases. In conclusion, we detected that hypoxic conditions generate extensive differential gene expression in GSCs, increasing the expression of genes associated with chemoresistance. Furthermore, we observed that MRS1220 could regulate the expression of LIMD1, TRIB2, and TGFB1, which are involved in chemoresistance and correlate with a poor prognosis, hypoxia, and purinergic signaling.

2.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674160

RESUMEN

Slc4a genes encode various types of transporters, including Na+-HCO3- cotransporters, Cl-/HCO3- exchangers, or Na+-driven Cl-/HCO3- exchangers. Previous research has revealed that Slc4a9 (Ae4) functions as a Cl-/HCO3- exchanger, which can be driven by either Na+ or K+, prompting investigation into whether other Slc4a members facilitate cation-dependent anion transport. In the present study, we show that either Na+ or K+ drive Cl-/HCO3- exchanger activity in cells overexpressing Slc4a8 or Slc4a10. Further characterization of cation-driven Cl-/HCO3- exchange demonstrated that Slc4a8 and Slc4a10 also mediate Cl- and HCO3--dependent K+ transport. Full-atom molecular dynamics simulation on the recently solved structure of Slc4a8 supports the coordination of K+ at the Na+ binding site in S1. Sequence analysis shows that the critical residues coordinating monovalent cations are conserved among mouse Slc4a8 and Slc4a10 proteins. Together, our results suggest that Slc4a8 and Slc4a10 might transport K+ in the same direction as HCO3- ions in a similar fashion to that described for Na+ transport in the rat Slc4a8 structure.


Asunto(s)
Potasio , Simportadores de Sodio-Bicarbonato , Animales , Ratones , Bicarbonatos/metabolismo , Sitios de Unión , Antiportadores de Cloruro-Bicarbonato/metabolismo , Antiportadores de Cloruro-Bicarbonato/genética , Cloruros/metabolismo , Transporte Iónico , Simulación de Dinámica Molecular , Potasio/metabolismo , Sodio/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Simportadores de Sodio-Bicarbonato/genética
3.
Chronobiol Int ; 39(2): 269-284, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34727788

RESUMEN

Synchronization to periodic cues such as food/water availability and light/dark cycles is crucial for living organisms' homeostasis. Both factors have been heavily influenced by human activity, with artificial light at night (ALAN) being an evolutionary challenge imposed over roughly the last century. Evidence from studies in humans and animal models shows that overt circadian misalignment, such as that imposed to about 20% of the workforce by night shift work (NSW), negatively impinges on the internal temporal order of endocrinology, physiology, metabolism, and behavior. Moreover, NSW is often associated to mistimed feeding, with both unnatural behaviors being known to increase the risk of chronic diseases, such as eating disorders, overweight, obesity, cardiovascular, metabolic (particularly type 2 diabetes mellitus) and gastrointestinal disorders, some types of cancer, as well as mental disease including sleep disturbances, cognitive disorders, and depression. Regarding deleterious effects of ALAN on reproduction, increased risk of miscarriage, preterm delivery and low birth weight have been reported in shift-worker women. These mounting lines of evidence prompt further efforts to advance our understanding of the effects of long-term NSW on health. Emerging data suggest that NSW with or without mistimed feeding modify gene expression and functional readouts in different tissues/organs, which seem to translate into persistent cardiometabolic and endocrine dysfunction. However, this research avenue still faces multiple challenges, such as functional characterization of new experimental models more closely resembling human long-term NSW and mistimed feeding in males versus females; studying further target organs; identifying molecular changes by means of deep multi-omics analyses; and exploring biomarkers of NSW with translational medicine potential. Using high-throughput and systems biology is a relatively new approach to study NSW, aimed to generate experiments addressing new biological factors, pathways, and mechanisms, going beyond the boundaries of the circadian clock molecular machinery.


Asunto(s)
Relojes Circadianos , Diabetes Mellitus Tipo 2 , Horario de Trabajo por Turnos , Animales , Ritmo Circadiano , Femenino , Humanos , Masculino , Fotoperiodo , Horario de Trabajo por Turnos/efectos adversos
4.
Front Endocrinol (Lausanne) ; 12: 678468, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484111

RESUMEN

Compelling evidence in rats support the idea that gestational chronodisruption induces major changes in maternal circadian rhythms and fetal development and that these changes impact adult life at many physiological levels. Using a model of chronic photoperiod shifting throughout gestation (CPS), in which pregnant female rats (Sprague-Dawley strain; n = 16 per group) were exposed to lighting schedule manipulation every 3-4 days reversing the photoperiod completely or light/dark photoperiod (12/12; LD), we explored in the adult rat male offspring body weight gain, glucose homeostasis, adipose tissue content, adipose tissue response to norepinephrine (NE), and adipose tissue proteomic in the basal condition with standard diet (SD) and in response to high-fat diet (HFD). In adult CPS male (100-200 days old; n = 8 per group), we found increasing body weight, under SD and adiposity. Also, we found an increased response to intraperitoneal glucose (IGTT). After 12 weeks of HFD, white adipose tissue depots in CPS offspring were increased further, and higher IGTT and lower intraperitoneal insulin tolerance response were found, despite the lack of changes in food intake. In in vitro experiments, we observed that adipose tissue (WAT and BAT) glycerol response to NE from CPS offspring was decreased, and it was completely abolished by HFD. At the proteomic level, in CPS adipose tissue, 275 proteins displayed differential expression, compared with LD animals fed with a standard diet. Interestingly, CPS offspring and LD fed with HFD showed 20 proteins in common (2 upregulated and 18 downregulated). Based on these common proteins, the IPA analysis found that two functional pathways were significantly altered by CPS: network 1 (AKT/ERK) and network 2 (TNF/IL4; data are available via ProteomeXchange with identifier PXD026315). The present data show that gestational chronodisruption induced deleterious effects in adipose tissue recruitment and function, supporting the idea that adipose tissue function was programmed in utero by gestational chronodisruption, inducing deficient metabolic responses that persist into adulthood.


Asunto(s)
Tejido Adiposo/metabolismo , Ritmo Circadiano/fisiología , Glucosa/metabolismo , Fotoperiodo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Trastornos Cronobiológicos/metabolismo , Femenino , Homeostasis/fisiología , Masculino , Embarazo , Proteómica , Ratas , Ratas Sprague-Dawley
5.
Acta Neuropathol ; 140(5): 737-764, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32642868

RESUMEN

Impaired neuronal proteostasis is a salient feature of many neurodegenerative diseases, highlighting alterations in the function of the endoplasmic reticulum (ER). We previously reported that targeting the transcription factor XBP1, a key mediator of the ER stress response, delays disease progression and reduces protein aggregation in various models of neurodegeneration. To identify disease modifier genes that may explain the neuroprotective effects of XBP1 deficiency, we performed gene expression profiling of brain cortex and striatum of these animals and uncovered insulin-like growth factor 2 (Igf2) as the major upregulated gene. Here, we studied the impact of IGF2 signaling on protein aggregation in models of Huntington's disease (HD) as proof of concept. Cell culture studies revealed that IGF2 treatment decreases the load of intracellular aggregates of mutant huntingtin and a polyglutamine peptide. These results were validated using induced pluripotent stem cells (iPSC)-derived medium spiny neurons from HD patients and spinocerebellar ataxia cases. The reduction in the levels of mutant huntingtin was associated with a decrease in the half-life of the intracellular protein. The decrease in the levels of abnormal protein aggregation triggered by IGF2 was independent of the activity of autophagy and the proteasome pathways, the two main routes for mutant huntingtin clearance. Conversely, IGF2 signaling enhanced the secretion of soluble mutant huntingtin species through exosomes and microvesicles involving changes in actin dynamics. Administration of IGF2 into the brain of HD mice using gene therapy led to a significant decrease in the levels of mutant huntingtin in three different animal models. Moreover, analysis of human postmortem brain tissue and blood samples from HD patients showed a reduction in IGF2 level. This study identifies IGF2 as a relevant factor deregulated in HD, operating as a disease modifier that buffers the accumulation of abnormal protein species.


Asunto(s)
Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Factor II del Crecimiento Similar a la Insulina/metabolismo , Agregación Patológica de Proteínas/metabolismo , Animales , Humanos , Factor II del Crecimiento Similar a la Insulina/farmacología , Ratones , Ratones Transgénicos , Agregado de Proteínas/efectos de los fármacos
6.
Artículo en Inglés | MEDLINE | ID: mdl-31244775

RESUMEN

Adverse prenatal conditions are known to impose significant trade-offs impinging on health and disease balance during adult life. Among several deleterious factors associated with complicated pregnancy, alteration of the gestational photoperiod remains largely unknown. Previously, we reported that prenatal manipulation of the photoperiod has adverse effects on the mother, fetus, and adult offspring; including cardiac hypertrophy. Here, we investigated whether chronic photoperiod shifting (CPS) during gestation may program adult renal function and blood pressure regulation. To this end, pregnant rats were subjected to CPS throughout pregnancy to evaluate the renal effects on the fetus and adult offspring. In the kidney at 18 days of gestation, both clock and clock-controlled gene expression did not display a daily pattern, although there were recurrent weaves of transcriptional activity along the 24 h in the control group. Using DNA microarray, significant differential expression was found for 1,703 transcripts in CPS relative to control fetal kidney (835 up-regulated and 868 down-regulated). Functional genomics assessment revealed alteration of diverse gene networks in the CPS fetal kidney, including regulation of transcription, aldosterone-regulated Na+ reabsorption and connective tissue differentiation. In adult offspring at 90 days of age, circulating proinflammatory cytokines IL-1ß and IL-6 were increased under CPS conditions. In these individuals, CPS did not modify kidney clock gene expression but had effects on different genes with specific functions in the nephron. Next, we evaluated several renal markers and the response of blood pressure to 4%NaCl in the diet for 4 weeks (i.e., at 150 days of age). CPS animals displayed elevated systolic blood pressure in basal conditions that remained elevated in response to 4%NaCl, relative to control conditions. At this age, CPS modified the expression of Nhe3, Ncc, Atp1a1, Nr3c1 (glucocorticoid receptor), and Nr3c2 (mineralocorticoid receptor); while Nkcc, Col3A1, and Opn were modified in the CPS 4%+NaCl group. Furthermore, CPS decreased protein expression of Kallikrein and COX-2, both involved in sodium handling. In conclusion, gestational chronodisruption programs kidney dysfunction at different levels, conceivably underlying the prehypertensive phenotype observed in the adult CPS offspring.

7.
Cancer Lett ; 446: 112-122, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30660649

RESUMEN

Glioblastoma (GBM) is the brain tumor with the worst prognosis composed of a cell subpopulation called Glioblastoma Stem-like Cells (GSCs) responsible for tumor recurrence mediated by cell invasion. GSCs persist in a hypoxic microenvironment which promotes extracellular adenosine production and activation of the A3 Adenosine Receptor (A3AR), therefore, the aim of this study was to determine the role of extracellular adenosine and A3AR on GSCs invasion under hypoxia. GSCs were obtained from a U87MG cell line and primary cultures of GBM patients, and then incubated under normoxia or hypoxia. Gene expression was evaluated by RNAseq, RT-qPCR, and western blot. Cell migration was measured by spreading and transwell boyden chamber assays; cell invasion was evaluated by Matrigel-coated transwell, ex vivo brain slice, and in vivo xenograft assays. The contribution of A3AR on cell migration/invasion was evaluated using the A3AR antagonist, MRS1220. Extracellular adenosine production was higher under hypoxia than normoxia, mainly by the catalytic action of the prostatic acid phosphatase (PAP), promoting cell migration/invasion in a HIF-2-dependent process. A3AR blockade decreased cell migration/invasion and the expression of Epithelial-Mesenchymal Transition markers. In conclusion, high levels of extracellular adenosine production enhance cell migration/invasion of GSCs, through HIF-2/PAP-dependent activation of A3AR under hypoxia.


Asunto(s)
Adenosina/metabolismo , Neoplasias Encefálicas/metabolismo , Movimiento Celular , Glioblastoma/metabolismo , Células Madre Neoplásicas/metabolismo , Receptor de Adenosina A3/metabolismo , Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioblastoma/genética , Glioblastoma/patología , Humanos , Ratones Endogámicos NOD , Ratones SCID , Invasividad Neoplásica , Células Madre Neoplásicas/patología , Receptor de Adenosina A3/genética , Transducción de Señal , Células Tumorales Cultivadas , Hipoxia Tumoral , Microambiente Tumoral
8.
Artículo en Inglés | MEDLINE | ID: mdl-28879169

RESUMEN

Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen that establishes a latent persistent neuronal infection in humans. The pathogenic effects of repeated viral reactivation in infected neurons are still unknown. Several studies have reported that during HSV-1 epithelial infection, the virus could modulate diverse cell signaling pathways remodeling the Golgi apparatus (GA) membranes, but the molecular mechanisms implicated, and the functional consequences to neurons is currently unknown. Here we report that infection of primary neuronal cultures with HSV-1 triggers Src tyrosine kinase activation and subsequent phosphorylation of Dynamin 2 GTPase, two players with a role in GA integrity maintenance. Immunofluorescence analyses showed that HSV-1 productive neuronal infection caused a scattered and fragmented distribution of the GA through the cytoplasm, contrasting with the uniform perinuclear distribution pattern observed in control cells. In addition, transmission electron microscopy revealed swollen cisternae and disorganized stacks in HSV-1 infected neurons compared to control cells. Interestingly, PP2, a selective inhibitor for Src-family kinases markedly reduced these morphological alterations of the GA induced by HSV-1 infection strongly supporting the possible involvement of Src tyrosine kinase. Finally, we showed that HSV-1 tegument protein VP11/12 is necessary but not sufficient to induce Dyn2 phosphorylation. Altogether, these results show that HSV-1 neuronal infection triggers activation of Src tyrosine kinase, phosphorylation of Dynamin 2 GTPase, and perturbation of GA integrity. These findings suggest a possible neuropathogenic mechanism triggered by HSV-1 infection, which could involve dysfunction of the secretory system in neurons and central nervous system.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/virología , Herpesvirus Humano 1/patogenicidad , Familia-src Quinasas/metabolismo , Animales , Antígenos Virales/metabolismo , Línea Celular , Membrana Celular/metabolismo , Supervivencia Celular , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/virología , Chlorocebus aethiops , Citoplasma/metabolismo , Citoplasma/virología , Dinamina II , Dinaminas/metabolismo , Regulación Viral de la Expresión Génica , Genes Virales/genética , Aparato de Golgi/ultraestructura , Herpesvirus Humano 1/genética , Humanos , Ratones , Microscopía Electrónica de Transmisión , Neuronas/metabolismo , Neuronas/virología , Fosforilación , Pirimidinas/farmacología , Transducción de Señal , Células Vero , Proteínas Virales/metabolismo , Familia-src Quinasas/efectos de los fármacos
9.
Endocrinology ; 157(12): 4654-4668, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27802074

RESUMEN

Chronic exposure to light at night, as in shift work, alters biological clocks (chronodisruption), negatively impacting pregnancy outcome in humans. Actually the interaction of maternal and fetal circadian systems could be a key factor determining a fitting health in adults. We propose that chronic photoperiod shift (CPS) during pregnancy alter maternal circadian rhythms and impair circadian physiology in the adult offspring, increasing health risks. Pregnant rats were exposed to normal photoperiod (12 h light, 12 h dark) or to CPS until 85% of gestation. The effects of gestational CPS were evaluated on the mother and adult offspring. In the mother we measured rhythms of heart rate, body temperature, and activity through gestation and daily rhythms of plasma variables (melatonin, corticosterone, aldosterone, and markers of renal function) at 18 days of gestation. In adult offspring, we measured rhythms of the clock gene expression in the suprachiasmatic nucleus (SCN), locomotor activity, body temperature, heart rate, blood pressure, plasma variables, glucose tolerance, and corticosterone response to ACTH. CPS altered all maternal circadian rhythms, lengthened gestation, and increased newborn weight. The adult CPS offspring presented normal rhythms of clock gene expression in the SCN, locomotor activity, and body temperature. However, the daily rhythm of plasma melatonin was absent, and corticosterone, aldosterone, renal markers, blood pressure, and heart rate rhythms were altered. Moreover, CPS offspring presented decreased glucose tolerance and an abnormal corticosterone response to ACTH. Altogether these data show that gestational CPS induced long-term effects on the offspring circadian system, wherein a normal SCN coexists with altered endocrine, cardiovascular, and metabolic function.


Asunto(s)
Ritmo Circadiano/fisiología , Frecuencia Cardíaca/fisiología , Actividad Motora/fisiología , Fotoperiodo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Aldosterona/sangre , Animales , Presión Sanguínea/fisiología , Temperatura Corporal/fisiología , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Enfermedad Crónica , Corticosterona/sangre , Femenino , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/fisiopatología , Masculino , Melatonina/sangre , Embarazo , Ratas , Factores Sexuales , Núcleo Supraquiasmático/metabolismo
10.
Physiol Genomics ; 47(12): 621-33, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26419525

RESUMEN

Recent reports account for altered metabolism in adult offspring from pregnancy subjected to abnormal photoperiod, suggesting fetal programming of liver physiology. To generate a pipeline of subsequent mechanistic experiments addressing strong candidate genes, here we investigated the effects of constant gestational light on the fetal liver transcriptome. At 10 days of gestation, dams were randomized in two groups (n = 7 each): constant light (LL) and normal photoperiod (12 h light/12 h dark; LD). At 18 days of gestation, RNA was isolated from the fetal liver and subjected to DNA microarray (Affymetrix platform for 28,000 genes). Selected differential mRNAs were validated by quantitative PCR (qPCR), while integrated transcriptional changes were analyzed with Ingenuity Pathway Analysis and other bioinformatics tools. Comparison of LL relative to LD fetal liver led to the following findings. Significant differential expression was found for 3,431 transcripts (1,960 upregulated and 1,471 downregulated), with 393 of them displaying ≥ 1.5-fold change. We validated 27 selected transcripts by qPCR, which displayed fold-change values highly correlated with microarray (r(2) = 0.91). Different markers of nonalcoholic fatty liver disease were either upregulated (e.g., Ndn and Pnpla3) or downregulated (e.g., Gnmt, Bhmt1/2, Sult1a1, Mpo, and Mat1a). Diverse pathways were altered, including hematopoiesis, coagulation cascade, complement system, and carbohydrate and lipid metabolism. The microRNAs 7a-1, 431, 146a, and 153 were upregulated, while the abundant hepatic miRNA 122 was downregulated. Constant gestational light induced extensive modification of the fetal liver transcriptome. A number of differentially expressed transcripts belong to fundamental functional pathways, potentially contributing to long-term liver disease.


Asunto(s)
Luz , Hepatopatías/metabolismo , Animales , Femenino , Feto , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Metabolismo de los Lípidos/genética , Hígado , MicroARNs/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo , Ratas
11.
PLoS One ; 9(3): e91313, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24663672

RESUMEN

Epidemiological and experimental evidence correlates adverse intrauterine conditions with the onset of disease later in life. For a fetus to achieve a successful transition to extrauterine life, a myriad of temporally integrated humoral/biophysical signals must be accurately provided by the mother. We and others have shown the existence of daily rhythms in the fetus, with peripheral clocks being entrained by maternal cues, such as transplacental melatonin signaling. Among developing tissues, the fetal hippocampus is a key structure for learning and memory processing that may be anticipated as a sensitive target of gestational chronodisruption. Here, we used pregnant rats exposed to constant light treated with or without melatonin as a model of gestational chronodisruption, to investigate effects on the putative fetal hippocampus clock, as well as on adult offspring's rhythms, endocrine and spatial memory outcomes. The hippocampus of fetuses gestated under light:dark photoperiod (12:12 LD) displayed daily oscillatory expression of the clock genes Bmal1 and Per2, clock-controlled genes Mtnr1b, Slc2a4, Nr3c1 and NMDA receptor subunits 1B-3A-3B. In contrast, in the hippocampus of fetuses gestated under constant light (LL), these oscillations were suppressed. In the adult LL offspring (reared in LD during postpartum), we observed complete lack of day/night differences in plasma melatonin and decreased day/night differences in plasma corticosterone. In the adult LL offspring, overall hippocampal day/night difference of gene expression was decreased, which was accompanied by a significant deficit of spatial memory. Notably, maternal melatonin replacement to dams subjected to gestational chronodisruption prevented the effects observed in both, LL fetuses and adult LL offspring. Collectively, the present data point to adverse effects of gestational chronodisruption on long-term cognitive function; raising challenging questions about the consequences of shift work during pregnancy. The present study also supports that developmental plasticity in response to photoperiodic cues may be modulated by maternal melatonin.


Asunto(s)
Regulación de la Expresión Génica , Hipocampo/metabolismo , Glicoproteínas de Membrana/genética , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Receptores de N-Metil-D-Aspartato/genética , Memoria Espacial , Animales , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/genética , Relojes Circadianos/efectos de la radiación , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Hipocampo/efectos de la radiación , Luz , Exposición Materna/efectos adversos , Melatonina/farmacología , Fotoperiodo , Embarazo , Efectos Tardíos de la Exposición Prenatal/prevención & control , Ratas , Ratas Sprague-Dawley , Memoria Espacial/efectos de los fármacos , Memoria Espacial/efectos de la radiación
12.
J Mol Cell Cardiol ; 66: 1-11, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24200829

RESUMEN

We recently reported that gestational chronodisruption induces fetal growth restriction and marked effects on fetal adrenal physiology. Here, whole-transcriptome profiling was used to test whether gestational chronodisruption modifies gene expression in the fetal heart, potentially altering cardiac development. At day 10 of gestation (E10), pregnant rats were randomized in two groups: constant light (LL) and control 12 h light/12 h dark photoperiod (LD). RNA isolated from E18 heart was subjected to microarray analysis (Affymetrix platform for 28,000 genes). Integrated transcriptional changes were assessed by gene ontology and pathway analysis. Significant differential expression was found for 383 transcripts in LL relative to LD fetal heart (280 up-regulated and 103 down-regulated); with 42 of them displaying a 1.5-fold or greater change in gene expression. Deregulated markers of cardiovascular disease accounted for alteration of diverse gene networks in LL fetal heart, including local steroidogenesis and vascular calcification, as well as cardiac hypertrophy, stenosis and necrosis/cell death. DNA integrity was also overrepresented, including a 2.1-fold increase of Hmga1 mRNA, which encodes for a profuse architectural transcription factor. microRNA analysis revealed up-regulation of miRNAs 218-1 and 501 and concurrent down-regulation of their validated target genes. In addition, persistent down-regulation of Kcnip2 mRNA and hypertrophy of the left ventricle were found in the heart from 90 days-old offspring from LL mothers. The dysregulation of a relevant fraction of the fetal cardiac transcriptome, together with the diversity and complexity of the gene networks altered by gestational chronodisruption, suggest enduring molecular changes which may shape the hypertrophy observed in the left ventricle of adult LL offspring.


Asunto(s)
Ritmo Circadiano/genética , Genómica , Miocardio/metabolismo , ARN Mensajero/genética , Animales , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/patología , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Calcinosis/genética , Calcinosis/metabolismo , Calcinosis/patología , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , Embrión de Mamíferos , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas de Interacción con los Canales Kv/genética , Proteínas de Interacción con los Canales Kv/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Miocardio/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fotoperiodo , Embarazo , ARN Mensajero/metabolismo , Ratas , Esteroides/biosíntesis , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología
13.
PLoS One ; 7(8): e42713, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22912724

RESUMEN

Surprisingly, in our modern 24/7 society, there is scant information on the impact of developmental chronodisruption like the one experienced by shift worker pregnant women on fetal and postnatal physiology. There are important differences between the maternal and fetal circadian systems; for instance, the suprachiasmatic nucleus is the master clock in the mother but not in the fetus. Despite this, several tissues/organs display circadian oscillations in the fetus. Our hypothesis is that the maternal plasma melatonin rhythm drives the fetal circadian system, which in turn relies this information to other fetal tissues through corticosterone rhythmic signaling. The present data show that suppression of the maternal plasma melatonin circadian rhythm, secondary to exposure of pregnant rats to constant light along the second half of gestation, had several effects on fetal development. First, it induced intrauterine growth retardation. Second, in the fetal adrenal in vivo it markedly affected the mRNA expression level of clock genes and clock-controlled genes as well as it lowered the content and precluded the rhythm of corticosterone. Third, an altered in vitro fetal adrenal response to ACTH of both, corticosterone production and relative expression of clock genes and steroidogenic genes was observed. All these changes were reversed when the mother received a daily dose of melatonin during the subjective night; supporting a role of melatonin on overall fetal development and pointing to it as a 'time giver' for the fetal adrenal gland. Thus, the present results collectively support that the maternal circadian rhythm of melatonin is a key signal for the generation and/or synchronization of the circadian rhythms in the fetal adrenal gland. In turn, low levels and lack of a circadian rhythm of fetal corticosterone may be responsible of fetal growth restriction; potentially inducing long term effects in the offspring, possibility that warrants further research.


Asunto(s)
Glándulas Suprarrenales/embriología , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/efectos de la radiación , Feto/fisiología , Luz/efectos adversos , Melatonina/farmacología , Madres , Factores de Transcripción ARNTL/genética , Glándulas Suprarrenales/efectos de los fármacos , Glándulas Suprarrenales/fisiología , Glándulas Suprarrenales/efectos de la radiación , Hormona Adrenocorticotrópica/farmacología , Animales , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/efectos de la radiación , Corticosterona/sangre , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Femenino , Feto/efectos de los fármacos , Feto/embriología , Feto/efectos de la radiación , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Proteínas Circadianas Period/genética , Fosfoproteínas/genética , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Melatonina/genética , Factores de Tiempo
14.
J Cell Physiol ; 205(1): 19-24, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15965961

RESUMEN

Several reports have indicated the absence of gluconeogenic enzymes in pancreatic islet cells. In contrast, here we demonstrate that liver fructose-1,6-bisphosphatase (FBPase) is highly expressed both in human and rat pancreas. Interestingly, pancreatic FBPase is active and functional, and is inhibited by AMP and fructose-2,6-bisphosphate (Fru-2,6-P2). These results suggest that FBPase may participate as a component of a metabolic sensing mechanism present in the pancreas. Immunolocalization analysis showed that FBPase is expressed both in human and rat Langerhans islets, specifically in beta cells. In humans, FBPase was also located in the canaliculus and acinar cells. These results indicate that FBPase coupled with phosphofructokinase (PFK) plays a crucial role in the metabolism of pancreatic islet cells. The demonstration of gluconeogenic recycling of trioses as a new metabolic signaling pathway may contribute to our understanding of the differences between the insulin secretagogues trioses, fructose, and glucose in pancreas.


Asunto(s)
Fructosa-Bifosfatasa/metabolismo , Regulación Enzimológica de la Expresión Génica , Islotes Pancreáticos/enzimología , Hígado/enzimología , Animales , Fructosa-Bifosfatasa/genética , Humanos , Riñón/enzimología , Masculino , Especificidad de Órganos , Ratas
15.
J Cell Physiol ; 202(3): 743-53, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15389646

RESUMEN

The expression of aldolase A and B isoenzyme transcripts was confirmed by RT-PCR in rat kidney and their cell distribution was compared with characteristic enzymes of the gluconeogenic and glycolytic metabolic pathway: fructose-1,6-bisphosphatase (FBPase), phosphoenol pyruvate carboxykinase (PEPCK), and pyruvate kinase (PK). We detected aldolase A isoenzyme in the thin limb and collecting ducts of the medulla and in the distal tubules and glomerula of the cortex. The same pattern of distribution was found for PK, but not for aldolase B, PEPCK, and FBPase. In addition, co-localization studies confirmed that aldolase B, FBPase, and PEPCK are expressed in the same proximal cells. This segregated cell distribution of aldolase A and B with key glycolytic and gluconeogenic enzymes, respectively, suggests that these aldolase isoenzymes participate in different metabolic pathways. In order to test if FBPase interacts with aldolase B, FBPase was immobilized on agarose and subjected to binding experiments. The results show that only aldolase B is specifically bound to FBPase and that this interaction was specifically disrupted by 60 microM Fru-1,6-P2. These data indicate the presence of a modulated enzyme-enzyme interaction between FBPase and isoenzyme B. They affirm that in kidney, aldolase B specifically participates, along the gluconeogenic pathway and aldolase A in glycolysis.


Asunto(s)
Fructosa-Bifosfatasa/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Glucosa/metabolismo , Isoenzimas/metabolismo , Riñón/enzimología , Animales , Cromatografía de Afinidad , Detergentes/metabolismo , Fructosa-Bifosfato Aldolasa/genética , Gluconeogénesis , Glucólisis , Isoenzimas/genética , Riñón/citología , Complejos Multienzimáticos , Octoxinol/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Ratas , Ratas Wistar , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...