Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J R Soc Interface ; 21(215): 20240035, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38835248

RESUMEN

The Earth's magnetic field can provide reliable directional information, allowing migrating animals to orient themselves using a magnetic compass or estimate their position relative to a target using map-based orientation. Here we show for the first time that young, inexperienced herring (Clupea harengus, Ch) have a magnetic compass when they migrate hundreds of kilometres to their feeding grounds. In birds, such as the European robin (Erithacus rubecula), radical pair-based magnetoreception involving cryptochrome 4 (ErCRY4) was demonstrated; the molecular basis of magnetoreception in fish is still elusive. We show that cry4 expression in the eye of herring is upregulated during the migratory season, but not before, indicating a possible use for migration. The amino acid structure of herring ChCRY4 shows four tryptophans and a flavin adenine dinucleotide-binding site, a prerequisite for a magnetic receptor. Using homology modelling, we successfully reconstructed ChCRY4 of herring, DrCRY4 of zebrafish (Danio rerio) and StCRY4 of brown trout (Salmo trutta) and showed that ChCRY4, DrCRY4 and ErCRY4a, but not StCRY4, exhibit very comparable dynamic behaviour. The electron transfer could take place in ChCRY4 in a similar way to ErCRY4a. The combined behavioural, transcriptomic and simulation experiments provide evidence that CRY4 could act as a magnetoreceptor in Atlantic herring.


Asunto(s)
Criptocromos , Peces , Animales , Criptocromos/metabolismo , Criptocromos/química , Peces/fisiología , Migración Animal/fisiología , Campos Magnéticos , Proteínas de Peces/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/química , Orientación/fisiología
2.
J Exp Biol ; 227(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38291981

RESUMEN

Sprat (Sprattus sprattus) is one of the most commercially exploited fish species in the Baltic Sea and expresses a pronounced seasonal migration pattern. Spawning takes place, among other places, in the Kiel Bight and Kiel Fjord in early summer. Juvenile sprat leave the nursery areas in late summer/early autumn to move to their feeding and overwintering grounds. What kind of orientation mechanisms sprat use for migration is not known yet. This study shows that juvenile sprat can use a time-compensated sun compass, heading towards the northeast, in the direction of their proposed overwintering grounds in Bornholm Basin. The sprats tested at the end of August oriented themselves in the predicted direction, whereas the sprats tested at the beginning of August only showed a random orientation. For the first time, this demonstrates the onset of migratory readiness in juvenile sprat, indicating the preparation for starting their migration.


Asunto(s)
Peces , Animales , Estaciones del Año
3.
iScience ; 26(6): 106950, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37378340

RESUMEN

Millions of minute, newly hatched coral reef fish larvae get carried into the open ocean by highly complex and variable currents. To survive, they must return to a suitable reef habitat within a species-specific time. Strikingly, previous studies have demonstrated that return to home reefs is much more frequent than would be expected by chance. It has been shown that magnetic and sun compass orientation can help cardinalfish maintain their innate swimming direction but do they also have a navigational map to cope with unexpected displacements? If displaced settling-stage cardinalfish Ostorhinchus doederleini use positional information during their pelagic dispersal, we would expect them to re-orient toward their home reef. However, after physical displacement by 180 km, the fish showed a swimming direction indistinguishable from original directions near the capture site. This suggests that the tested fish rely on innate or learned compass directions and show no evidence for map-based navigation.

4.
J Exp Biol ; 225(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35996951

RESUMEN

Atlantic herring (Clupea harengus), an ecologically and economically important species in the northern hemisphere, shows pronounced seasonal migratory behaviour. To follow distinctive migration patterns over hundreds of kilometers between feeding, overwintering and spawning grounds, they are probably guided by orientation mechanisms. We tested whether juvenile spring-spawning Atlantic herring, caught in the western Baltic, use a sun compass for orientation just before they start leaving their hatching area. Fish were randomly divided into two groups, one of them clock-shifted 6 h backwards, to investigate whether they shift their orientation direction accordingly. Individual fish were placed in a circular bowl and their orientation was tested multiple times with the sun as a sole visual orientational cue. Our results show for the first time that juvenile Atlantic herring use a time-compensated sun compass during their migration. Their swimming direction was impaired, but still present, even when the sky was very cloudy, indicating additional orientation capabilities.


Asunto(s)
Peces , Animales , Estaciones del Año
5.
Oxid Med Cell Longev ; 2021: 3917028, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34257800

RESUMEN

BACKGROUND: Long-term hematopoietic stem cells (LT-HSCs) reside in bone marrow niches with tightly controlled reactive oxygen species (ROS) levels. ROS increase results into LT-HSC differentiation and stem cell exhaustion. Paraoxonase 2 (PON2) has been shown to be important for ROS control. OBJECTIVES: We investigate the effects of inactivation of the PON2 gene on hematopoietic cell differentiation and activity. METHODS AND RESULTS: In young mice with inactivated Pon2 gene (Pon2 -/-, <3 months), we observed an increase of LT-HSCs and a reduced frequency of progenitor cells. In competitive transplantations, young Pon2-/- BM outcompeted WT BM at early time points. ROS levels were significantly increased in Pon2-/- whole BM, but not in Pon2-/- LT-HSCs. In more differentiated stages of hematopoiesis, Pon2 deficiency led to a misbalanced erythropoiesis both in physiologic and stress conditions. In older mice (>9 months), Pon2 depletion caused an increase in LT-HSCs as well as increased levels of granulocyte/macrophage progenitors (GMPs) and myeloid skewing, indicating a premature aging phenotype. No significant changes in ROS levels in old Pon2-/- LT- and short-term (ST-) HSCs were observed, but a significant reduction of spontaneous apoptotic cell death was measured. RNA-seq analysis in Pon2 -/- LT-HSCs identified overrepresentation of genes involved in the C-X-C chemokine receptor type 4 (Cxcr4) signaling, suggesting compensatory mechanisms to overcome ROS-mediated accelerated aging in hematopoietic progenitor cells. CONCLUSIONS: In summary, our current data indicate that PON2 is involved in the regulation of HSC functions.


Asunto(s)
Antioxidantes/metabolismo , Arildialquilfosfatasa/deficiencia , Eritropoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Animales , Arildialquilfosfatasa/metabolismo , Diferenciación Celular/fisiología , Línea Celular , Células Madre Hematopoyéticas/enzimología , Ratones , Fenotipo , Especies Reactivas de Oxígeno/metabolismo
6.
Brain Sci ; 10(6)2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503260

RESUMEN

Preclinical research using different rodent model systems has largely contributed to the scientific progress in the pain field, however, it suffers from interspecies differences, limited access to human models, and ethical concerns. Human induced pluripotent stem cells (iPSCs) offer major advantages over animal models, i.e., they retain the genome of the donor (patient), and thus allow donor-specific and cell-type specific research. Consequently, human iPSC-derived nociceptors (iDNs) offer intriguingly new possibilities for patient-specific, animal-free research. In the present study, we characterized iDNs based on the expression of well described nociceptive markers and ion channels, and we conducted a side-by-side comparison of iDNs with mouse sensory neurons. Specifically, immunofluorescence (IF) analyses with selected markers including early somatosensory transcription factors (BRN3A/ISL1/RUNX1), the low-affinity nerve growth factor receptor (p75), hyperpolarization-activated cyclic nucleotide-gated channels (HCN), as well as high voltage-gated calcium channels (VGCC) of the CaV2 type, calcium permeable TRPV1 channels, and ionotropic GABAA receptors, were used to address the characteristics of the iDN phenotype. We further combined IF analyses with microfluorimetric Ca2+ measurements to address the functionality of these ion channels in iDNs. Thus, we provide a detailed morphological and functional characterization of iDNs, thereby, underpinning their enormous potential as an animal-free alternative for human specific research in the pain field for unveiling pathophysiological mechanisms and for unbiased, disease-specific personalized drug development.

7.
Cells ; 8(6)2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31208035

RESUMEN

Numerous experimental studies demonstrate that the Ras homolog family of guanosine triphosphate hydrolases (Rho GTPases) Ras homolog family member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42) are important regulators in somatosensory neurons, where they elicit changes in the cellular cytoskeleton and are involved in diverse biological processes during development, differentiation, survival and regeneration. This review summarizes the status of research regarding the expression and the role of the Rho GTPases in peripheral sensory neurons and how these small proteins are involved in development and outgrowth of sensory neurons, as well as in neuronal regeneration after injury, inflammation and pain perception. In sensory neurons, Rho GTPases are activated by various extracellular signals through membrane receptors and elicit their action through a wide range of downstream effectors, such as Rho-associated protein kinase (ROCK), phosphoinositide 3-kinase (PI3K) or mixed-lineage kinase (MLK). While RhoA is implicated in the assembly of stress fibres and focal adhesions and inhibits neuronal outgrowth through growth cone collapse, Rac1 and Cdc42 promote neuronal development, differentiation and neuroregeneration. The functions of Rho GTPases are critically important in the peripheral somatosensory system; however, their signalling interconnections and partially antagonistic actions are not yet fully understood.


Asunto(s)
Células Receptoras Sensoriales/patología , Células Receptoras Sensoriales/fisiología , Proteínas de Unión al GTP rho/metabolismo , Animales , Humanos , Degeneración Nerviosa/patología , Neuritas/metabolismo , Nocicepción , Traumatismos de los Nervios Periféricos/patología
8.
Blood ; 131(19): 2161-2172, 2018 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-29439952

RESUMEN

Oxidative stress and inflammation of the vessel wall contribute to prothrombotic states. The antioxidative protein paraoxonase-2 (PON2) shows reduced expression in human atherosclerotic plaques and endothelial cells in particular. Supporting a direct role for PON2 in cardiovascular diseases, Pon2 deficiency in mice promotes atherogenesis through incompletely understood mechanisms. Here, we show that deregulated redox regulation in Pon2 deficiency causes vascular inflammation and abnormalities in blood coagulation. In unchallenged Pon2-/- mice, we find increased oxidative stress and endothelial dysfunction. Bone marrow transplantation experiments and studies with endothelial cells provide evidence that increased inflammation, indicated by circulating interleukin-6 levels, originates from Pon2 deficiency in the vasculature. Isolated endothelial cells from Pon2-/- mice display increased tissue factor (TF) activity in vitro. Coagulation times were shortened and platelet procoagulant activity increased in Pon2-/- mice relative to wild-type controls. Coagulation abnormalities of Pon2-/- mice were normalized by anti-TF treatment, demonstrating directly that TF increases coagulation. PON2 reexpression in endothelial cells by conditional reversal of the knockout Pon2 cassette, restoration in the vessel wall using bone marrow chimeras, or treatment with the antioxidant N-acetylcysteine normalized the procoagulant state. These experiments delineate a PON2 redox-dependent mechanism that regulates endothelial cell TF activity and prevents systemic coagulation activation and inflammation.


Asunto(s)
Arildialquilfosfatasa/genética , Coagulación Sanguínea/genética , Células Endoteliales/metabolismo , Tromboplastina/metabolismo , Animales , Arildialquilfosfatasa/metabolismo , Citocinas/metabolismo , Humanos , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Oxidación-Reducción , Estrés Oxidativo
9.
PLoS One ; 10(10): e0141195, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26488403

RESUMEN

Rhogocytes, also termed "pore cells", occur as solitary or clustered cells in the connective tissue of gastropod molluscs. Rhogocytes possess an enveloping lamina of extracellular matrix and enigmatic extracellular lacunae bridged by cytoplasmic bars that form 20 nm diaphragmatic slits likely to act as a molecular sieve. Recent papers highlight the embryogenesis and ultrastructure of these cells, and their role in heavy metal detoxification. Rhogocytes are the site of hemocyanin or hemoglobin biosynthesis in gastropods. Based on electron microscopy, we recently proposed a possible pathway of hemoglobin exocytosis through the slit apparatus, and provided molecular evidence of a common phylogenetic origin of molluscan rhogocytes, insect nephrocytes and vertebrate podocytes. However, the previously proposed secretion mode of the respiratory proteins into the hemolymph is still rather hypothetical, and the possible role of rhogocytes in detoxification requires additional data. Although our previous study on rhogocytes of the red-blooded (hemoglobin-containing) freshwater snail Biomphalaria glabrata provided much new information, a disadvantage was that the hemoglobin molecules were not unequivocally defined in the electron microscope. This made it difficult to trace the exocytosis pathway of this protein. Therefore, we have now performed a similar study on the rhogocytes of the blue-blooded (hemocyanin-containing) freshwater snail Lymnaea stagnalis. The intracellular hemocyanin could be identified in the electron microscope, either as individual molecules or as pseudo-crystalline arrays. Based on 3D-electron microscopy, and supplemented by in situ hybridization, immunocytochemistry and stress response experiments, we provide here additional details on the structure and hemocyanin biosynthesis of rhogocytes, and on their response in animals under cadmium and starvation stress. Moreover, we present an advanced model on the release of synthesized hemocyanin molecules through the slit apparatus into the hemolymph, and the uptake of much smaller particles such as cadmium ions from the hemolymph through the slit apparatus into the cytoplasm.


Asunto(s)
Lymnaea/ultraestructura , Caracoles/ultraestructura , Animales , Biomphalaria/metabolismo , Biomphalaria/ultraestructura , Cadmio/metabolismo , Agua Dulce , Hemocianinas/metabolismo , Hemocianinas/ultraestructura , Hemoglobinas/metabolismo , Hemolinfa/diagnóstico por imagen , Hemolinfa/metabolismo , Hibridación in Situ , Lymnaea/metabolismo , Microscopía Electrónica/métodos , Caracoles/metabolismo , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...