Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
JMIR AI ; 3: e54371, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137416

RESUMEN

BACKGROUND: Although uncertainties exist regarding implementation, artificial intelligence-driven generative language models (GLMs) have enormous potential in medicine. Deployment of GLMs could improve patient comprehension of clinical texts and improve low health literacy. OBJECTIVE: The goal of this study is to evaluate the potential of ChatGPT-3.5 and GPT-4 to tailor the complexity of medical information to patient-specific input education level, which is crucial if it is to serve as a tool in addressing low health literacy. METHODS: Input templates related to 2 prevalent chronic diseases-type II diabetes and hypertension-were designed. Each clinical vignette was adjusted for hypothetical patient education levels to evaluate output personalization. To assess the success of a GLM (GPT-3.5 and GPT-4) in tailoring output writing, the readability of pre- and posttransformation outputs were quantified using the Flesch reading ease score (FKRE) and the Flesch-Kincaid grade level (FKGL). RESULTS: Responses (n=80) were generated using GPT-3.5 and GPT-4 across 2 clinical vignettes. For GPT-3.5, FKRE means were 57.75 (SD 4.75), 51.28 (SD 5.14), 32.28 (SD 4.52), and 28.31 (SD 5.22) for 6th grade, 8th grade, high school, and bachelor's, respectively; FKGL mean scores were 9.08 (SD 0.90), 10.27 (SD 1.06), 13.4 (SD 0.80), and 13.74 (SD 1.18). GPT-3.5 only aligned with the prespecified education levels at the bachelor's degree. Conversely, GPT-4's FKRE mean scores were 74.54 (SD 2.6), 71.25 (SD 4.96), 47.61 (SD 6.13), and 13.71 (SD 5.77), with FKGL mean scores of 6.3 (SD 0.73), 6.7 (SD 1.11), 11.09 (SD 1.26), and 17.03 (SD 1.11) for the same respective education levels. GPT-4 met the target readability for all groups except the 6th-grade FKRE average. Both GLMs produced outputs with statistically significant differences (P<.001; 8th grade P<.001; high school P<.001; bachelors P=.003; FKGL: 6th grade P=.001; 8th grade P<.001; high school P<.001; bachelors P<.001) between mean FKRE and FKGL across input education levels. CONCLUSIONS: GLMs can change the structure and readability of medical text outputs according to input-specified education. However, GLMs categorize input education designation into 3 broad tiers of output readability: easy (6th and 8th grade), medium (high school), and difficult (bachelor's degree). This is the first result to suggest that there are broader boundaries in the success of GLMs in output text simplification. Future research must establish how GLMs can reliably personalize medical texts to prespecified education levels to enable a broader impact on health care literacy.

2.
JMIR Med Educ ; 9: e49877, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37948112

RESUMEN

BACKGROUND: The transition to clinical clerkships can be difficult for medical students, as it requires the synthesis and application of preclinical information into diagnostic and therapeutic decisions. ChatGPT-a generative language model with many medical applications due to its creativity, memory, and accuracy-can help students in this transition. OBJECTIVE: This paper models ChatGPT 3.5's ability to perform interactive clinical simulations and shows this tool's benefit to medical education. METHODS: Simulation starting prompts were refined using ChatGPT 3.5 in Google Chrome. Starting prompts were selected based on assessment format, stepwise progression of simulation events and questions, free-response question type, responsiveness to user inputs, postscenario feedback, and medical accuracy of the feedback. The chosen scenarios were advanced cardiac life support and medical intensive care (for sepsis and pneumonia). RESULTS: Two starting prompts were chosen. Prompt 1 was developed through 3 test simulations and used successfully in 2 simulations. Prompt 2 was developed through 10 additional test simulations and used successfully in 1 simulation. CONCLUSIONS: ChatGPT is capable of creating simulations for early clinical education. These simulations let students practice novel parts of the clinical curriculum, such as forming independent diagnostic and therapeutic impressions over an entire patient encounter. Furthermore, the simulations can adapt to user inputs in a way that replicates real life more accurately than premade question bank clinical vignettes. Finally, ChatGPT can create potentially unlimited free simulations with specific feedback, which increases access for medical students with lower socioeconomic status and underresourced medical schools. However, no tool is perfect, and ChatGPT is no exception; there are concerns about simulation accuracy and replicability that need to be addressed to further optimize ChatGPT's performance as an educational resource.

3.
Curr Biol ; 33(12): 2397-2406.e6, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37201520

RESUMEN

Acute avoidance of dangerous temperatures is critical for animals to prevent or minimize injury. Therefore, surface receptors have evolved to endow neurons with the capacity to detect noxious heat so that animals can initiate escape behaviors. Animals including humans have evolved intrinsic pain-suppressing systems to attenuate nociception under some circumstances. Here, using Drosophila melanogaster, we uncovered a new mechanism through which thermal nociception is suppressed. We identified a single descending neuron in each brain hemisphere, which is the center for suppression of thermal nociception. These Epi neurons, for Epione-the goddess of soothing of pain-express a nociception-suppressing neuropeptide Allatostatin C (AstC), which is related to a mammalian anti-nociceptive peptide, somatostatin. Epi neurons are direct sensors for noxious heat, and when activated they release AstC, which diminishes nociception. We found that Epi neurons also express the heat-activated TRP channel, Painless (Pain), and thermal activation of Epi neurons and the subsequent suppression of thermal nociception depend on Pain. Thus, while TRP channels are well known to sense noxious temperatures to promote avoidance behavior, this work reveals the first role for a TRP channel for detecting noxious temperatures for the purpose of suppressing rather than enhancing nociception behavior in response to hot thermal stimuli.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Humanos , Drosophila melanogaster/fisiología , Calor , Proteínas de Drosophila/metabolismo , Nocicepción/fisiología , Dolor , Neuronas/metabolismo , Encéfalo/metabolismo , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA