Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(11)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38004956

RESUMEN

Peristaltic pumps are widely used in biomedical applications to ensure the safe flow of sterile or medical fluids. They are commonly employed for drug injections, IV fluids, and blood separation (apheresis). These pumps operate through a progressive contraction or expansion along a flexible tube, enabling fluid flow. They are also utilized in industrial applications for sanitary fluid transport, corrosive fluid handling, and novel pharmacological delivery systems. This research provides valuable insights into the selection and optimal design of the powertrain stages for peristaltic pumps implemented in drug delivery systems. The focus of this paper lies in the simulation and optimization of the performance of a power transmission gearbox by examining the energy consumption, sound levels, reliability, and volume as output metrics. The components of the powertrain consist of a helical gear pair for the first stage, a bevel gear pair for the second one, and finally a planetary transmission. Through extensive simulations, the model exhibits promising results, achieving an efficiency of up to 90%. Furthermore, alternative configurations were investigated to optimize the overall performance of the powertrain. This process has been simulated by employing the KISSsoft/KISSsys software package. The findings of this investigation contribute to advancements in the field of biomedical engineering and hold significant potential for improving the efficiency, reliability, and performance of drug delivery mechanisms.

2.
Materials (Basel) ; 16(22)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38005155

RESUMEN

This work is focused on the development of creep and stress relaxation models on Inconel 625 and Stainless Steel 310 materials for additive manufacturing. At the end, the operational lifespan of an industrial-scale additive manufactured recuperator is evaluated. An industrial-scale recuperator for burners with a highly complex geometry is manufactured using Continuous Wave SLM and Pulsed Wave Selective Laser Melting techniques. The recuperator operates under steady but high thermal loads, reaching temperatures of up to 875 °C. Therefore, its service life is assessed, considering creep and stress relaxation phenomena. Two different materials are evaluated: Inconel 625 and Stainless Steel 310. Tensile testing has been conducted on samples at various temperatures to acquire material parameters, incorporating appropriately the anisotropic nature of the materials. Creep parameters were determined through creep experiments and data from the literature, and the recuperator response was simulated by FEA modelling. Analytical creep and stress relaxation models were proposed based on the simulation results for each material to predict their creep response. The service life was determined by applying a custom failure criterion based on the creep testing data. The Inconel 625 recuperator exhibits a service life that is significantly higher compared to any burner's life, while the Stainless Steel 310 recuperator exhibits approximately 27 years of service life. Both materials are considered suitable; however, Inconel 625 offers higher resistance to creep according to creep tests, and due to its lower thermal expansion coefficient, the resulting thermal stresses are lower.

3.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37833972

RESUMEN

Graphyne is a material that has unique mechanical properties, but little is known about how these properties change when the material has holes. In this work, the effect of hole geometry, considering circular, triangle, and rhombus hole configurations, on the mechanical nonlinear response of γ-graphyne structures is studied. Graphyne, graphdiyne, graphyne-3, and graphyne-4 structures are under investigation. An efficient nonlinear finite element analysis (FEA) method is adequately implemented under large deformations for this purpose. The study varied the size and shape of the holes to understand how these changes affect the nanostructure's mechanical response. The results indicate that the hole geometry significantly impacts the mechanical nonlinear response of γ-graphyne structures. The holes' size and shape affect the structures' elastic behavior, deformation, and strength. The findings can be used to optimize the design of γ-graphyne structures for specific mechanical applications. The study highlights the importance of considering the hole geometries in the design and fabrication of these materials.


Asunto(s)
Estrés Mecánico , Análisis de Elementos Finitos
4.
Micromachines (Basel) ; 13(5)2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35630242

RESUMEN

Additive manufacturing (AM) technology has been researched and developed for almost three decades. Microscale AM is one of the fastest-growing fields of research within the AM area. Considerable progress has been made in the development and commercialization of new and innovative microscale AM processes, as well as several practical applications in a variety of fields. However, there are still significant challenges that exist in terms of design, available materials, processes, and the ability to fabricate true three-dimensional structures and systems at a microscale. For instance, microscale AM fabrication technologies are associated with certain limitations and constraints due to the scale aspect, which may require the establishment and use of specialized design methodologies in order to overcome them. The aim of this paper is to review the main processes, materials, and applications of the current microscale AM technology, to present future research needs for this technology, and to discuss the need for the introduction of a design methodology. Thus, one of the primary concerns of the current paper is to present the design aspects describing the comparative advantages and AM limitations at the microscale, as well as the selection of processes and materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...