Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Stem Cell Reports ; 19(4): 562-578, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38552632

RESUMEN

Human pluripotent stem cell (hPSC) cultures are prone to genetic drift, because cells that have acquired specific genetic abnormalities experience a selective advantage in vitro. These abnormalities are highly recurrent in hPSC lines worldwide, but their functional consequences in differentiating cells are scarcely described. In this work, we show that the loss of chromosome 18q impairs neuroectoderm commitment and that downregulation of SALL3, a gene located in the common 18q loss region, is responsible for this failed neuroectodermal differentiation. Knockdown of SALL3 in control lines impaired differentiation in a manner similar to the loss of 18q, and transgenic overexpression of SALL3 in hESCs with 18q loss rescued the differentiation capacity of the cells. Finally, we show that loss of 18q and downregulation of SALL3 leads to changes in the expression of genes involved in pathways regulating pluripotency and differentiation, suggesting that these cells are in an altered state of pluripotency.


Asunto(s)
Células Madre Embrionarias Humanas , Células Madre Pluripotentes , Humanos , Diferenciación Celular/genética , Células Madre Pluripotentes/metabolismo , Cromosomas
2.
Nat Commun ; 15(1): 1232, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336715

RESUMEN

Children conceived through assisted reproductive technologies (ART) have an elevated risk of lower birthweight, yet the underlying cause remains unclear. Our study explores mitochondrial DNA (mtDNA) variants as contributors to birthweight differences by impacting mitochondrial function during prenatal development. We deep-sequenced the mtDNA of 451 ART and spontaneously conceived (SC) individuals, 157 mother-child pairs and 113 individual oocytes from either natural menstrual cycles or after ovarian stimulation (OS) and find that ART individuals carried a different mtDNA genotype than SC individuals, with more de novo non-synonymous variants. These variants, along with rRNA variants, correlate with lower birthweight percentiles, independent of conception mode. Their higher occurrence in ART individuals stems from de novo mutagenesis associated with maternal aging and OS-induced oocyte cohort size. Future research will establish the long-term health consequences of these changes and how these findings will impact the clinical practice and patient counselling in the future.


Asunto(s)
Recien Nacido Prematuro , Nacimiento Prematuro , Embarazo , Recién Nacido , Femenino , Humanos , Resultado del Embarazo , Embarazo Múltiple , Nacimiento Prematuro/epidemiología , Peso al Nacer , Mitocondrias/genética , ADN Mitocondrial/genética
3.
Stem Cell Reports ; 19(1): 11-27, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38157850

RESUMEN

The genetic abnormalities observed in hPSC cultures worldwide have been suggested to pose an important hurdle in their safe use in regenerative medicine due to the possibility of oncogenic transformation by mutant cells in the patient posttransplantation. One of the best-characterized genetic lesions in hPSCs is the gain of 20q11.21, found in 20% of hPSC lines worldwide, and strikingly, also amplified in 20% of human cancers. In this review, we have curated the existing knowledge on the incidence of this mutation in hPSCs and cancer, explored the significance of chromosome 20q11.21 amplification in cancer progression, and reviewed the oncogenic role of the genes in the smallest common region of gain, to shed light on the significance of this mutation in hPSC-based cell therapy. Lastly, we discuss the state-of-the-art strategies devised to detect aneuploidies in hPSC cultures, avoid genetic changes in vitro cultures of hPSCs, and strategies to eliminate genetically abnormal cells from culture.


Asunto(s)
Células Madre Pluripotentes , Humanos , Mutación , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Aneuploidia , Diferenciación Celular/genética
4.
Stem Cell Reports ; 18(9): 1744-1752, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37703820

RESUMEN

The laboratory culture of human stem cells seeks to capture a cellular state as an in vitro surrogate of a biological system. For the results and outputs from this research to be accurate, meaningful, and durable, standards that ensure reproducibility and reliability of the data should be applied. Although such standards have been previously proposed for repositories and distribution centers, no widely accepted best practices exist for laboratory research with human pluripotent and tissue stem cells. To fill that void, the International Society for Stem Cell Research has developed a set of recommendations, including reporting criteria, for scientists in basic research laboratories. These criteria are designed to be technically and financially feasible and, when implemented, enhance the reproducibility and rigor of stem cell research.


Asunto(s)
Investigación con Células Madre , Humanos , Reproducibilidad de los Resultados
5.
Reprod Biomed Online ; 46(5): 826-834, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37130623

RESUMEN

RESEARCH QUESTION: Is there an association between FSHR sequence variants and reproductive outcomes following IVF in predicted normoresponders? DESIGN: Multicentre prospective cohort study conducted from November 2016 to June 2019 in Vietnam, Belgium and Spain including patients aged <38 years, and undergoing IVF with a predicted normal response with fixed-dose 150 IU rFSH in an antagonist protocol. Genotyping was performed for three FSHR (c.919A>G, c.2039A>G, c.-29G>A) and one FSHB sequence variants (c.-211G>T). Clinical pregnancy rate (CPR), live birth rate (LBR) and miscarriage rate in the first embryo transfer and cumulative live birth rate (CLBR) were compared between the different genotypes. RESULTS: A total of 351 patients underwent at least one embryo transfer. Genetic model analysis that adjusted for patient age, body mass index, ethnicity, type of embryo transfer, embryo stage and number of top-quality embryos transferred revealed a higher CPR for homozygous patients for the variant allele G of c.919A>G when compared to patients with genotype AA (60.3% versus 46.3%, adjusted odds ratio [ORadj] 1.96, 95% confidence interval [CI] 1.09-3.53). Also, c.919A>G genotypes AG and GG presented a higher CPR and LBR when compared with genotype AA (59.1% versus 46.3%, ORadj 1.80, 95% CI 1.08-3.00, and 51.3% versus 39.0%, ORadj 1.69, 95% CI 1.01-2.80, respectively). Cox regression models revealed a statistically significantly lower CLBR for c.2039A>G genotype GG in the codominant model (hazard ratio [HR] 0.66, 95% CI 0.43-0.99). CONCLUSION: These results demonstrate a previously unreported association between variant c.919A>G genotype GG and higher CPR and LBR in infertile patients and reinforce a potential role for genetic background in predicting the reproductive prognosis following IVF.


Asunto(s)
Transferencia de Embrión , Receptores de HFE , Reproducción , Femenino , Humanos , Embarazo , Tasa de Natalidad , Transferencia de Embrión/métodos , Fertilización In Vitro , Genotipo , Nacimiento Vivo , Índice de Embarazo , Estudios Prospectivos , Estudios Retrospectivos , Receptores de HFE/genética
6.
Cell Stem Cell ; 29(12): 1624-1636, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459966

RESUMEN

It is well established that human pluripotent stem cells (hPSCs) can acquire genetic and epigenetic changes during culture in vitro. Given the increasing use of hPSCs in research and therapy and the vast expansion in the number of hPSC lines available for researchers, the International Society for Stem Cell Research has recognized the need to reassess quality control standards for ensuring the genetic integrity of hPSCs. Here, we summarize current knowledge of the nature of recurrent genetic and epigenetic variants in hPSC culture, the methods for their detection, and what is known concerning their effects on cell behavior in vitro or in vivo. We argue that the potential consequences of low-level contamination of cell therapy products with cells bearing oncogenic variants are essentially unknown at present. We highlight the key challenges facing the field with particular reference to safety assessment of hPSC-derived cellular therapeutics.


Asunto(s)
Epigenómica , Células Madre Pluripotentes , Humanos , Investigación con Células Madre , Oncogenes , Epigénesis Genética
7.
Hum Reprod Open ; 2022(4): hoac044, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36349144

RESUMEN

STUDY QUESTION: How should ART/preimplantation genetic testing (PGT) centres manage the detection of chromosomal mosaicism following PGT? SUMMARY ANSWER: Thirty good practice recommendations were formulated that can be used by ART/PGT centres as a basis for their own policy with regards to the management of 'mosaic' embryos. WHAT IS KNOWN ALREADY: The use of comprehensive chromosome screening technologies has provided a variety of data on the incidence of chromosomal mosaicism at the preimplantation stage of development and evidence is accumulating that clarifies the clinical outcomes after transfer of embryos with putative mosaic results, with regards to implantation, miscarriage and live birth rates, and neonatal outcomes. STUDY DESIGN SIZE DURATION: This document was developed according to a predefined methodology for ESHRE good practice recommendations. Recommendations are supported by data from the literature, a large survey evaluating current practice and published guidance documents. The literature search was performed using PubMed and focused on studies published between 2010 and 2022. The survey was performed through a web-based questionnaire distributed to members of the ESHRE special interest groups (SIG) Reproductive Genetics and Embryology, and the ESHRE PGT Consortium members. It included questions on ART and PGT, reporting, embryo transfer policy and follow-up of transfers. The final dataset represents 239 centres. PARTICIPANTS/MATERIALS SETTING METHODS: The working group (WG) included 16 members with expertise on the ART/PGT process and chromosomal mosaicism. The recommendations for clinical practice were formulated based on the expert opinion of the WG, while taking into consideration the published data and results of the survey. MAIN RESULTS AND THE ROLE OF CHANCE: Eighty percent of centres that biopsy three or more cells report mosaicism, even though only 66.9% of all centres have validated their technology and only 61.8% of these have validated specifically for the calling of chromosomal mosaicism. The criteria for designating mosaicism, reporting and transfer policies vary significantly across the centres replying to the survey. The WG formulated recommendations on how to manage the detection of chromosomal mosaicism in clinical practice, considering validation, risk assessment, designating and reporting mosaicism, embryo transfer policies, prenatal testing and follow-up. Guidance is also provided on the essential elements that should constitute the consent forms and the genetic report, and that should be covered in genetic counselling. As there are several unknowns in chromosomal mosaicism, it is recommended that PGT centres monitor emerging data on the topic and adapt or refine their policy whenever new insights are available from evidence. LIMITATIONS REASONS FOR CAUTION: Rather than providing instant standardized advice, the recommendations should help ART/PGT centres in developing their own policy towards the management of putative mosaic embryos in clinical practice. WIDER IMPLICATIONS OF THE FINDINGS: This document will help facilitate a more knowledge-based approach for dealing with chromosomal mosaicism in different centres. In addition to recommendations for clinical practice, recommendations for future research were formulated. Following up on these will direct research towards existing research gaps with direct translation to clinical practice. Emerging data will help in improving guidance, and a more evidence-based approach of managing chromosomal mosaicism. STUDY FUNDING/COMPETING INTERESTS: The WG received technical support from ESHRE. M.D.R. participated in the EQA special advisory group, outside the submitted work, and is the chair of the PGT WG of the Belgian society for human genetics. D.W. declared receiving salary from Juno Genetics, UK. A.C. is an employee of Igenomix, Italy and C.R. is an employee of Igenomix, Spain. C.S. received a research grant from FWO, Belgium, not related to the submitted work. I.S. declared being a Co-founder of IVFvision Ltd, UK. J.R.V. declared patents related to 'Methods for haplotyping single-cells' and 'Haplotyping and copy number typing using polymorphic variant allelic frequencies', and being a board member of Preimplantation Genetic Diagnosis International Society (PGDIS) and International Society for Prenatal Diagnosis (ISPD). K.S. reported being Chair-elect of ESHRE. The other authors had nothing to disclose. DISCLAIMER: This Good Practice Recommendations (GPR) document represents the views of ESHRE, which are the result of consensus between the relevant ESHRE stakeholders and are based on the scientific evidence available at the time of preparation.  ESHRE GPRs should be used for information and educational purposes. They should not be interpreted as setting a standard of care or be deemed inclusive of all proper methods of care, or be exclusive of other methods of care reasonably directed to obtaining the same results. They do not replace the need for application of clinical judgement to each individual presentation, or variations based on locality and facility type.  Furthermore, ESHRE GPRs do not constitute or imply the endorsement, or favouring, of any of the included technologies by ESHRE.

8.
Methods Mol Biol ; 2429: 57-72, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35507155

RESUMEN

Human pluripotent stem cells have a wide variety of potential applications, ranging from clinical translation to in vitro disease modeling. However, there is significant variation in the potential of individual cell lines to differentiate towards each of the three germ layers as a result of (epi)genetic background, culture conditions, and other factors. We describe here in detail a methodology to evaluate this bias using short directed differentiation towards neuroectoderm, mesendoderm, and definitive endoderm in combination with quantification by RT-qPCR and immunofluorescent stains.


Asunto(s)
Endodermo , Células Madre Pluripotentes , Diferenciación Celular , Estratos Germinativos , Humanos , Placa Neural
9.
Mol Hum Reprod ; 28(4)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35404421

RESUMEN

About 8 out of 10 human embryos obtained in vitro harbour chromosomal abnormalities of either meiotic or mitotic origin. Abnormalities of mitotic origin lead to chromosomal mosaicism, a phenomenon that has sparked much debate lately as it confounds results obtained through preimplantation genetic testing for aneuploidy (PGT-A). PGT-A in itself is still highly debated, not only on the modalities of its execution but also on whether it should be offered to patients at all. We will focus on post-zygotic chromosomal abnormalities leading to mosaicism. First, we will summarize what is known about the rates of chromosomal abnormalities at different developmental stages. Next, based on the current understanding of the origin and cellular consequences of chromosomal abnormalities, which is largely based on studies on cancer cells and model organisms, we will offer a number of hypotheses on which mechanisms may be at work in early human development. Finally, and very briefly, we will touch upon the impact our current knowledge has on the practice of PGT-A. What is the level of abnormal cells that an embryo can tolerate before it loses its potential for full development? And is blastocyst biopsy as harmless as it seems?


Asunto(s)
Diagnóstico Preimplantación , Aneuploidia , Blastocisto/patología , Femenino , Pruebas Genéticas/métodos , Humanos , Mosaicismo , Embarazo , Diagnóstico Preimplantación/métodos
10.
Hum Mol Genet ; 31(21): 3629-3642, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35285472

RESUMEN

Humans present remarkable diversity in their mitochondrial DNA (mtDNA) in terms of variants across individuals as well as across tissues and even cells within one person. We have investigated the timing of the first appearance of this variant-driven mosaicism. For this, we deep-sequenced the mtDNA of 254 oocytes from 85 donors, 158 single blastomeres of 25 day-3 embryos, 17 inner cell mass and trophectoderm samples of 7 day-5 blastocysts, 142 bulk DNA and 68 single cells of different adult tissues. We found that day-3 embryos present blastomeres that carry variants only detected in that cell, showing that mtDNA mosaicism arises very early in human development. We classified the mtDNA variants based on their recurrence or uniqueness across different samples. Recurring variants had higher heteroplasmic loads and more frequently resulted in synonymous changes or were located in non-coding regions than variants unique to one oocyte or single embryonic cell. These differences were maintained through development, suggesting that the mtDNA mosaicism arising in the embryo is maintained into adulthood. We observed a decline in potentially pathogenic variants between day 3 and day 5 of development, suggesting early selection. We propose a model in which closely clustered mitochondria carrying specific mtDNA variants in the ooplasm are asymmetrically distributed throughout the cell divisions of the preimplantation embryo, resulting in the earliest form of mtDNA mosaicism in human development.


Asunto(s)
ADN Mitocondrial , Desarrollo Embrionario , Adulto , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Linaje de la Célula/genética , Desarrollo Embrionario/genética , Oocitos/metabolismo , Mitocondrias/genética , Mosaicismo
11.
Biol Open ; 11(1)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35019138

RESUMEN

Skeletal muscle tissue is severely affected in myotonic dystrophy type 1 (DM1) patients, characterised by muscle weakness, myotonia and muscle immaturity in the most severe congenital form of the disease. Previously, it was not known at what stage during myogenesis the DM1 phenotype appears. In this study we differentiated healthy and DM1 human embryonic stem cells to myoblasts and myotubes and compared their differentiation potential using a comprehensive multi-omics approach. We found myogenesis in DM1 cells to be abnormal with altered myotube generation compared to healthy cells. We did not find differentially expressed genes between DM1 and non-DM1 cell lines within the same developmental stage. However, during differentiation we observed an aberrant inflammatory response and increased CpG methylation upstream of the CTG repeat at the myoblast level and RNA mis-splicing at the myotube stage. We show that early myogenesis modelled in hESC reiterates the early developmental manifestation of DM1.


Asunto(s)
Distrofia Miotónica , Células Madre Embrionarias/metabolismo , Humanos , Metilación , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Proteína Quinasa de Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/metabolismo , ARN/metabolismo
12.
Cells ; 10(11)2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34831467

RESUMEN

Human pluripotent stem cells (hPSC) are known to acquire chromosomal abnormalities, which range from point mutations to large copy number changes, including full chromosome aneuploidy. These aberrations have a wide-ranging influence on the state of cells, in both the undifferentiated and differentiated state. Currently, very little is known on how these abnormalities will impact the clinical translation of hPSC, and particularly their potential to prime cells for oncogenic transformation. A further complication is that many of these abnormalities exist in a mosaic state in culture, which complicates their detection with conventional karyotyping methods. In this review we discuss current knowledge on how these aberrations influence the cell state and how this may impact the future of research and the cells' clinical potential.


Asunto(s)
Aberraciones Cromosómicas , Células Madre Pluripotentes/patología , Carcinogénesis/genética , Carcinogénesis/patología , Diferenciación Celular/genética , Variaciones en el Número de Copia de ADN/genética , Humanos , Modelos Biológicos , Células Madre Pluripotentes/metabolismo
13.
Sci Rep ; 11(1): 6137, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731744

RESUMEN

Low differentiation propensity towards a targeted lineage can significantly hamper the utility of individual human pluripotent stem cell (hPSC) lines in biomedical applications. Here, we use monolayer and micropatterned cell cultures, as well as transcriptomic profiling, to investigate how variability in signalling pathway activity between human embryonic stem cell lines affects their differentiation efficiency towards definitive endoderm (DE). We show that endogenous suppression of WNT signalling in hPSCs at the onset of differentiation prevents the switch from self-renewal to DE specification. Gene expression profiling reveals that this inefficient switch is reflected in NANOG expression dynamics. Importantly, we demonstrate that higher WNT stimulation or inhibition of the PI3K/AKT signalling can overcome the DE commitment blockage. Our findings highlight that redirection of the activity of Activin/NODAL pathway by WNT signalling towards mediating DE fate specification is a vulnerable spot, as disruption of this process can result in poor hPSC specification towards DE.


Asunto(s)
Endodermo , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias Humanas , Vía de Señalización Wnt , Diferenciación Celular , Línea Celular , Endodermo/citología , Endodermo/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos
14.
Hum Mol Genet ; 29(21): 3566-3577, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33242073

RESUMEN

Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG repeat in the DMPK gene, where expansion size and somatic mosaicism correlates with disease severity and age of onset. While it is known that the mismatch repair protein MSH2 contributes to the unstable nature of the repeat, its role on other disease-related features, such as CpG methylation upstream of the repeat, is unknown. In this study, we investigated the effect of an MSH2 knock-down (MSH2KD) on both CTG repeat dynamics and CpG methylation pattern in human embryonic stem cells (hESC) carrying the DM1 mutation. Repeat size in MSH2 wild-type (MSH2WT) and MSH2KD DM1 hESC was determined by PacBio sequencing and CpG methylation by bisulfite massive parallel sequencing. We found stabilization of the CTG repeat concurrent with a gradual loss of methylation upstream of the repeat in MSH2KD cells, while the repeat continued to expand and upstream methylation remained unchanged in MSH2WT control lines. Repeat instability was re-established and biased towards expansions upon MSH2 transgenic re-expression in MSH2KD lines while upstream methylation was not consistently re-established. We hypothesize that the hypermethylation at the mutant DM1 locus is promoted by the MMR machinery and sustained by a constant DNA repair response, establishing a potential mechanistic link between CTG repeat instability and upstream CpG methylation. Our work represents a first step towards understanding how epigenetic alterations and repair pathways connect and contribute to the DM1 pathology.


Asunto(s)
Desmetilación , Inestabilidad Genómica , Células Madre Embrionarias Humanas/patología , Proteína 2 Homóloga a MutS/antagonistas & inhibidores , Distrofia Miotónica/patología , Proteína Quinasa de Distrofia Miotónica/genética , Expansión de Repetición de Trinucleótido , Sistemas CRISPR-Cas , Metilación de ADN , Reparación del ADN , Células Madre Embrionarias Humanas/metabolismo , Humanos , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Distrofia Miotónica/genética
15.
Sci Rep ; 9(1): 14844, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619727

RESUMEN

Human pluripotent stem cells (hPSCs) have significant levels of low-grade genetic mosaicism, which commonly used techniques fail to detect in bulk DNA. These copy number variations remain a hurdle for the clinical translation of hPSC, as their effect in vivo ranges from unknown to dangerous, and the ability to detect them will be necessary as the field advances. As such there is need for techniques which can efficiently analyse genetic content in single cells with higher throughput and lower costs. We report here on the use of the Fluidigm C1 single cell WGA platform in combination with shallow whole genome sequencing to analyse the genetic content of single hPSCs. From a hPSC line carrying an isochromosome 20, 56 single cells were analysed and found to carry a total of 50 aberrations, across 23% of cells, which could not be detected by bulk analysis. Aberrations were predominantly segmental gains, with a fewer number of segmental losses and aneuploidies. Interestingly, 40% of the breakpoints seen here correspond to known DNA fragile sites. Our results therefore demonstrate the feasibility of single cell shallow sequencing of hPSC and further expand upon the biological importance and frequency of single cell mosaicism in hPSC.


Asunto(s)
ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Células Madre Embrionarias Humanas , Mosaicismo , Análisis de la Célula Individual , Línea Celular , Humanos
16.
Bio Protoc ; 9(13): e3283, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33654798

RESUMEN

Detecting heteroplasmies in the mitochondrial DNA (mtDNA) has been a challenge for many years. In the past, Sanger sequencing was the main option to perform this analysis, however, this method could not detect low frequency heteroplasmies. Massive Parallel Sequencing (MPS) provides the opportunity to study the mtDNA in depth, but a controlled pipeline is necessary to reliably retrieve and quantify the low frequency variants. It has been shown that differences in methods can significantly affect the number and frequency of the retrieved variants. In this protocol, we present a method involving both wet lab and bioinformatics that allows identifying and quantifying single nucleotide variants in the full mtDNA sequence, down to a heteroplasmic load of 1.5%. For this, we set up a PCR-based amplification of the mtDNA, followed by MPS using Illumina chemistry, and variant calling with two different algorithms, mtDNA server and Mutect. The PCR amplification is used to enrich the mitochondrial fraction, while the bioinformatic processing with two algorithms is used to discriminate the true heteroplasmies from background noise. The protocol described here allows for deep sequencing of the mitochondrial DNA in bulk DNA samples as well as single cells (both large cells such as human oocytes, and small-sized single cells such as human embryonic stem cells) with minor modifications to the protocol.

17.
Reproduction ; 156(5): R143-R153, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30325181

RESUMEN

Human pluripotent stem cells have the capacity to self-renew indefinitely and the ability to differentiate into all cell types of a human body. These characteristics instill them with an enormous promise in regenerative medicine, where they could be used in cell, tissue and even organ-based replacement therapy. In this review, we discuss their potential clinical applications and the advantages and pitfalls for the different types of human pluripotent stem cells to transition from the bench to the bedside. We provide an overview of the current clinical trials, and the specific challenges we are still facing, including immune compatibility, suboptimal differentiation, risk of tumor formation and genome instability.


Asunto(s)
Células Madre Pluripotentes , Medicina Regenerativa/tendencias , Humanos
18.
Stem Cell Reports ; 11(1): 102-114, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29910126

RESUMEN

In this study, we deep-sequenced the mtDNA of human embryonic and induced pluripotent stem cells (hESCs and hiPSCs) and their source cells and found that the majority of variants pre-existed in the cells used to establish the lines. Early-passage hESCs carried few and low-load heteroplasmic variants, similar to those identified in oocytes and inner cell masses. The number and heteroplasmic loads of these variants increased with prolonged cell culture. The study of 120 individual cells of early- and late-passage hESCs revealed a significant diversity in mtDNA heteroplasmic variants at the single-cell level and that the variants that increase during time in culture are always passenger to the appearance of chromosomal abnormalities. We found that early-passage hiPSCs carry much higher loads of mtDNA variants than hESCs, which single-fibroblast sequencing proved pre-existed in the source cells. Finally, we show that these variants are stably transmitted during short-term differentiation.


Asunto(s)
Diferenciación Celular/genética , Evolución Clonal/genética , ADN Mitocondrial , Mutagénesis , Células Madre Pluripotentes/metabolismo , Alelos , Técnicas de Cultivo de Célula , Aberraciones Cromosómicas , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Heterogeneidad Genética , Variación Genética , Inestabilidad Genómica , Genotipo , Humanos , Mosaicismo
19.
Hum Reprod Update ; 24(2): 162-175, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29377992

RESUMEN

BACKGROUND: Human pluripotent stem cell (hPSC) lines are known to have a bias in their differentiation. This gives individual cell lines a propensity to preferentially differentiate towards one germ layer or cell type over others. Chromosomal aberrations, mitochondrial mutations, genetic diversity and epigenetic variance are the main drivers of this phenomenon, and can lead to a wide range of phenotypes. OBJECTIVE AND RATIONALE: Our aim is to provide a comprehensive overview of the different factors which influence differentiation propensity. Specifically, we sought to highlight known genetic variances and their mechanisms, in addition to more general observations from larger abnormalities. Furthermore, we wanted to provide an up-to-date list of a growing number of predictive indicators which are able to identify differentiation propensity before the initiation of differentiation. As differentiation propensity can lead to difficulties in both research as well as clinical translation, our thorough overview could be a useful tool. SEARCH METHODS: Combinations of the following key words were applied as search criteria in the PubMed database: embryonic stem cells, induced pluripotent stem cells, differentiation propensity (also: potential, efficiency, capacity, bias, variability), epigenetics, chromosomal abnormalities, genetic aberrations, X chromosome inactivation, mitochondrial function, mitochondrial metabolism, genetic diversity, reprogramming, predictive marker, residual stem cell, clinic. Only studies in English were included, ranging from 2000 to 2017, with a majority ranging from 2010 to 1017. Further manuscripts were added from cross-references. OUTCOMES: Differentiation propensity is affected by a wide variety of (epi)genetic factors. These factors clearly lead to a loss of differentiation capacity, preference towards certain cell types and oftentimes, phenotypes which begin to resemble cancer. Broad changes in (epi)genetics, such as aneuploidies or wide-ranging modifications to the epigenetic landscape tend to lead to extensive, less definite changes in differentiation capacity, whereas more specific abnormalities often have precise ramifications in which certain cell types become more preferential. Furthermore, there appears to be a greater, though often less considered, contribution to differentiation propensity by factors such as mitochondria and inherent genetic diversity. Varied differentiation capacity can also lead to potential consequences in the clinical translation of hPSC, including the occurrence of residual undifferentiated stem cells, and the transplantation of potentially transformed cells. WIDER IMPLICATIONS: As hPSC continue to advance towards the clinic, our understanding of them progresses as well. As a result, the challenges faced become more numerous, but also more clear. If the transition to the clinic is to be achieved with a minimum number of potential setbacks, thorough evaluation of the cells will be an absolute necessity. Altered differentiation propensity represents at least one such hurdle, for which researchers and eventually clinicians will need to find solutions. Already, steps are being taken to tackle the issue, though further research will be required to evaluate any long-term risks it poses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...