Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
BMC Biol ; 18(1): 187, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33267865

RESUMEN

BACKGROUND: The family Trypanosomatidae encompasses parasitic flagellates, some of which cause serious vector-transmitted diseases of humans and domestic animals. However, insect-restricted parasites represent the ancestral and most diverse group within the family. They display a range of unusual features and their study can provide insights into the biology of human pathogens. Here we describe Vickermania, a new genus of fly midgut-dwelling parasites that bear two flagella in contrast to other trypanosomatids, which are unambiguously uniflagellate. RESULTS: Vickermania has an odd cell cycle, in which shortly after the division the uniflagellate cell starts growing a new flagellum attached to the old one and preserves their contact until the late cytokinesis. The flagella connect to each other throughout their whole length and carry a peculiar seizing structure with a paddle-like apex and two lateral extensions at their tip. In contrast to typical trypanosomatids, which attach to the insect host's intestinal wall, Vickermania is separated from it by a continuous peritrophic membrane and resides freely in the fly midgut lumen. CONCLUSIONS: We propose that Vickermania developed a survival strategy that relies on constant movement preventing discharge from the host gut due to intestinal peristalsis. Since these parasites cannot attach to the midgut wall, they were forced to shorten the period of impaired motility when two separate flagella in dividing cells interfere with each other. The connection between the flagella ensures their coordinate movement until the separation of the daughter cells. We propose that Trypanosoma brucei, a severe human pathogen, during its development in the tsetse fly midgut faces the same conditions and follows the same strategy as Vickermania by employing an analogous adaptation, the flagellar connector.


Asunto(s)
Flagelos/fisiología , Interacciones Huésped-Parásitos , Trypanosomatina/clasificación , Moscas Tse-Tse/parasitología , Animales , Peristaltismo , Trypanosomatina/citología
2.
Folia Parasitol (Praha) ; 672020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32350156

RESUMEN

Here we describe the new trypanosomatid, Phytomonas borealis sp. n., from the midgut of the spiked shieldbugs, Picromerus bidens (Linnaeus), collected in two locations, Novgorod and Pskov Oblasts of Russia. The phylogenetic analyses, based on the 18S rRNA gene, demonstrated that this flagellate is a sister species to the secondary monoxenous Phytomonas nordicus Frolov et Malysheva, 1993, which was concurrently documented in the same host species in Pskov Oblast. Unlike P. nordicus, which can complete its development (including exit to haemolymph and penetration into salivary glands) in Picromerus bidens, the new species did not form any extraintestinal stages in the host. It also did not produce endomastigotes, indispensable for transmission in other Phytomonas spp. These observations, along with the fact that P. bidens overwinters at the egg stage, led us to the conclusion that the examined infections with P. borealis were non-specific. Strikingly, the flagellates from the Novgorod population contained prokaryotic endosymbionts, whereas the parasites from the second locality were endosymbiont-free. This is a first case documenting presence of intracellular symbiotic bacteria in Phytomonas spp. We suggest that this novel endosymbiotic association arose very recently and did not become obligate yet. Further investigation of P. borealis and its intracellular bacteria may shed light on the origin and early evolution of endosymbiosis in trypanosomatids.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Heterópteros/parasitología , Simbiosis , Trypanosomatina/clasificación , Animales , Heterópteros/crecimiento & desarrollo , Ninfa/crecimiento & desarrollo , Ninfa/parasitología , Filogenia , ARN Protozoario/análisis , ARN Ribosómico 18S/análisis , Federación de Rusia , Trypanosomatina/microbiología
3.
PLoS One ; 15(1): e0227832, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31945116

RESUMEN

Here we characterized the development of the trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus using light and electron microscopy. This parasite has been previously reported to occur in the host hemolymph, which is rather typical for dixenous trypanosomatids transmitted to a plant or vertebrate with insect's saliva. In addition, C. marginatus has an unusual organization of the intestine, which makes it refractory to microbial infections: two impassable segments isolate the anterior midgut portion responsible for digestion and absorption from the posterior one containing symbiotic bacteria. Our results refuted the possibility of hemolymph infection, but revealed that the refractory nature of the host provokes very aggressive behavior of the parasite and makes its life cycle more complex, reminiscent of that in some dixenous trypanosomatids. In the pre-barrier midgut portion, the epimastigotes of B. raabei attach to the epithelium and multiply similarly to regular insect trypanosomatids. However, when facing the impassable constricted region, the parasites rampage and either fiercely break through the isolating segments or attack the intestinal epithelium in front of the barrier. The cells of the latter group pass to the basal lamina and accumulate there, causing degradation of the epitheliocytes and thus helping the epimastigotes of the former group to advance posteriorly. In the symbiont-containing post-barrier midgut segment, the parasites either attach to bacterial cells and produce cyst-like amastigotes (CLAs) or infect enterocytes. In the rectum, all epimastigotes attach either to the cuticular lining or to each other and form CLAs. We argue that in addition to the specialized life cycle B. raabei possesses functional cell enhancements important either for the successful passage through the intestinal barriers (enlarged rostrum and well-developed Golgi complex) or as food reserves (vacuoles in the posterior end).


Asunto(s)
Infecciones por Euglenozoos/veterinaria , Heterópteros/inmunología , Interacciones Huésped-Parásitos/fisiología , Estadios del Ciclo de Vida/fisiología , Trypanosomatina/crecimiento & desarrollo , Animales , Resistencia a la Enfermedad , Infecciones por Euglenozoos/inmunología , Infecciones por Euglenozoos/parasitología , Hemolinfa/parasitología , Heterópteros/parasitología , Mucosa Intestinal/diagnóstico por imagen , Mucosa Intestinal/parasitología , Mucosa Intestinal/ultraestructura , Microscopía Electrónica , Trypanosomatina/patogenicidad , Trypanosomatina/ultraestructura
4.
PLoS One ; 14(4): e0214484, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30943229

RESUMEN

Here we described a new trypanosomatid species, Phytomonas lipae, parasitizing the dock bug Coreus marginatus based on axenic culture and in vivo material. Using light and electron microscopy we characterized the development of this flagellate in the intestine, hemolymph and salivary glands of its insect host. The intestinal promastigotes of Phytomonas lipae do not divide and occur only in the anterior part of the midgut. From there they pass into hemolymph, increasing in size, and then to salivary glands, where they actively proliferate without attachment to the host's epithelium and form infective endomastigotes. We conducted molecular phylogenetic analyses based on 18s rRNA, gGAPDH and HSP83 gene sequences, of which the third marker performed the best in terms of resolving phylogenetic relationships within the genus Phytomonas. Our inference demonstrated rather early origin of the lineage comprising the new species, right after that of P. oxycareni, which represents the earliest known branch within the Phytomonas clade. This allowed us to compare the development of P. lipae and three other Phytomonas spp. in their insect hosts and reconstruct the vectorial part of the life cycle of their common ancestor.


Asunto(s)
Heterópteros/parasitología , Estadios del Ciclo de Vida , Glándulas Salivales/parasitología , Trypanosomatina/genética , Animales , Proteínas de Choque Térmico/genética , Intestinos/parasitología , Kinetoplastida , Funciones de Verosimilitud , Filogenia , Proteínas Protozoarias/genética , ARN Ribosómico 18S/genética , Trypanosomatina/clasificación , Trypanosomatina/fisiología
5.
Parasit Vectors ; 11(1): 447, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30071897

RESUMEN

BACKGROUND: Amphibian trypanosomes were the first ever described trypanosomatids. Nevertheless, their taxonomy remains entangled because of pleomorphism and high prevalence of mixed infections. Despite the fact that the first species in this group were described in Europe, virtually none of the trypanosomes from European anurans was analyzed using modern molecular methods. METHODS: In this study, we explored the diversity and phylogeny of trypanosomes in true frogs from Europe using light microscopy and molecular methods. RESULTS: A comparison of observed morphotypes with previous descriptions allowed us to reliably identify three Trypanosoma spp., whereas the remaining two strains were considered to represent novel taxa. In all cases, more than one morphotype per blood sample was observed, indicating mixed infections. One hundred and thirty obtained 18S rRNA gene sequences were unambiguously subdivided into five groups, correspondent to the previously recognized or novel taxa of anuran trypanosomes. CONCLUSIONS: In this work we studied European frog trypanosomes. Even with a relatively moderate number of isolates, we were able to find not only three well-known species, but also two apparently new ones. We revealed that previous assignments of multiple isolates from distant geographical localities to one species based on superficial resemblance were unjustified. Our work also demonstrated a high prevalence of mixed trypanosome infections in frogs and proposed a plausible scenario of evolution of the genus Trypanosoma.


Asunto(s)
Anuros/parasitología , Filogenia , Trypanosoma/genética , Animales , Anuros/sangre , Clonación Molecular , Checoslovaquia , Variación Genética , Reacción en Cadena de la Polimerasa , ARN Protozoario/genética , ARN Ribosómico 18S/genética , Especificidad de la Especie , Trypanosoma/fisiología , Ucrania
6.
Parasitology ; 145(10): 1287-1293, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29642956

RESUMEN

Trypanosomatids of the genera Angomonas and Strigomonas (subfamily Strigomonadinae) have long been known to contain intracellular beta-proteobacteria, which provide them with many important nutrients such as haem, essential amino acids and vitamins. Recently, Kentomonas sorsogonicus, a divergent member of Strigomonadinae, has been described. Herein, we characterize the genome of its endosymbiont, Candidatus Kinetoplastibacterium sorsogonicusi. This genome is completely syntenic with those of other known Ca. Kinetoplastibacterium spp., but more reduced in size (~742 kb, compared with 810-833 kb, respectively). Gene losses are not concentrated in any hot-spots but are instead distributed throughout the genome. The most conspicuous loss is that of the haem-synthesis pathway. For long, removing haemin from the culture medium has been a standard procedure in cultivating trypanosomatids isolated from insects; continued growth was considered as an evidence of endosymbiont presence. However, we demonstrate that, despite bearing the endosymbiont, K. sorsogonicus cannot grow in culture without haem. Thus, the traditional test cannot be taken as a reliable criterion for the absence or presence of endosymbionts in trypanosomatid flagellates. It remains unclear why the ability to synthesize such an essential compound was lost in Ca. K. sorsogonicusi, whereas all other known bacterial endosymbionts of trypanosomatids retain them.


Asunto(s)
Betaproteobacteria/genética , Genoma Bacteriano , Hemo/metabolismo , Simbiosis , Trypanosomatina/microbiología , Betaproteobacteria/efectos de los fármacos , Betaproteobacteria/crecimiento & desarrollo , Vías Biosintéticas , Hemo/farmacología , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...