Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Psychiatry ; 12(1): 487, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402746

RESUMEN

Serotonin 2C receptors (5-HT2CRs) are widely distributed throughout the brain and are strongly implicated in the pathophysiology of anxiety disorders such as post-traumatic stress disorder (PTSD). Although in recent years, a considerable amount of evidence supports 5-HT2CRs facilitating effect on anxiety behavior, the involvement in learned fear responses and fear extinction is rather unexplored. Here, we used a 5-HT2CR knock-out mouse line (2CKO) to gain new insights into the involvement of 5-HT2CRs in the neuronal fear circuitry. Using a cued fear conditioning paradigm, our results revealed that global loss of 5-HT2CRs exclusively accelerates fear extinction, without affecting fear acquisition and fear expression. To investigate the neuronal substrates underlying the extinction enhancing effect, we mapped the immediate-early gene product cFos, a marker for neuronal activity, in the dorsal raphe nucleus (DRN), amygdala and bed nucleus of the stria terminalis (BNST). Surprisingly, besides extinction-associated changes, our results revealed alterations in neuronal activity even under basal home cage conditions in specific subregions of the DRN and the BNST in 2CKO mice. Neuronal activity in the dorsal BNST was shifted in an extinction-supporting direction due to 5-HT2CR knock-out. Finally, the assessment of DRN-BNST connectivity using antero- and retrograde tracing techniques uncovered a discrete serotonergic pathway projecting from the most caudal subregion of the DRN (DRC) to the anterodorsal portion of the BNST (BNSTad). This serotonergic DRC-BNSTad pathway showed increased neuronal activity in 2CKO mice. Thus, our results provide new insights for the fear extinction network by revealing a specific serotonergic DRC-BNSTad pathway underlying a 5-HT2CR-sensitive mechanism with high significance in the treatment of PTSD.


Asunto(s)
Miedo , Núcleos Septales , Ratones , Animales , Miedo/fisiología , Núcleos Septales/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Extinción Psicológica , Receptor de Serotonina 5-HT2C/genética , Receptor de Serotonina 5-HT2C/metabolismo
2.
Elife ; 92020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32252889

RESUMEN

Controlling gain of cortical activity is essential to modulate weights between internal ongoing communication and external sensory drive. Here, we show that serotonergic input has separable suppressive effects on the gain of ongoing and evoked visual activity. We combined optogenetic stimulation of the dorsal raphe nucleus (DRN) with wide-field calcium imaging, extracellular recordings, and iontophoresis of serotonin (5-HT) receptor antagonists in the mouse visual cortex. 5-HT1A receptors promote divisive suppression of spontaneous activity, while 5-HT2A receptors act divisively on visual response gain and largely account for normalization of population responses over a range of visual contrasts in awake and anesthetized states. Thus, 5-HT input provides balanced but distinct suppressive effects on ongoing and evoked activity components across neuronal populations. Imbalanced 5-HT1A/2A activation, either through receptor-specific drug intake, genetically predisposed irregular 5-HT receptor density, or change in sensory bombardment may enhance internal broadcasts and reduce sensory drive and vice versa.


Asunto(s)
Núcleo Dorsal del Rafe/fisiología , Optogenética/métodos , Neuronas Serotoninérgicas/fisiología , Corteza Visual/fisiología , Animales , Línea Celular , Núcleo Dorsal del Rafe/efectos de los fármacos , Luz , Estudios Longitudinales , Ratones , Ratones Transgénicos , Receptores de Serotonina/efectos de los fármacos , Receptores de Serotonina/fisiología , Serotonina/fisiología , Antagonistas de la Serotonina/administración & dosificación , Corteza Visual/efectos de los fármacos
3.
Chembiochem ; 20(14): 1766-1771, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30920724

RESUMEN

The primary goal of optogenetics is the light-controlled noninvasive and specific manipulation of various cellular processes. Herein, we present a hybrid strategy for targeted protein engineering combining computational techniques with electrophysiological and UV/visible spectroscopic experiments. We validated our concept for channelrhodopsin-2 and applied it to modify the less-well-studied vertebrate opsin melanopsin. Melanopsin is a promising optogenetic tool that functions as a selective molecular light switch for G protein-coupled receptor pathways. Thus, we constructed a model of the melanopsin Gq protein complex and predicted an absorption maximum shift of the Y211F variant. This variant displays a narrow blue-shifted action spectrum and twofold faster deactivation kinetics compared to wild-type melanopsin on G protein-coupled inward rectifying K+ (GIRK) channels in HEK293 cells. Furthermore, we verified the in vivo activity and optogenetic potential for the variant in mice. Thus, we propose that our developed concept will be generally applicable to designing optogenetic tools.


Asunto(s)
Opsinas de Bastones/química , Opsinas de Bastones/efectos de la radiación , Secuencia de Aminoácidos , Animales , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Luz , Ratones , Mutación , Optogenética/métodos , Prueba de Estudio Conceptual , Ingeniería de Proteínas , Células de Purkinje/metabolismo , Células de Purkinje/efectos de la radiación , Opsinas de Bastones/genética , Alineación de Secuencia , Transducción de Señal/efectos de la radiación
4.
Commun Biol ; 2: 60, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30793039

RESUMEN

The signal specificity of G protein-coupled receptors (GPCRs) including serotonin receptors (5-HT-R) depends on the trafficking and localization of the GPCR within its subcellular signaling domain. Visualizing traffic-dependent GPCR signals in neurons is difficult, but important to understand the contribution of GPCRs to synaptic plasticity. We engineered CaMello (Ca2+-melanopsin-local-sensor) and CaMello-5HT2A for visualization of traffic-dependent Ca2+ signals in 5-HT2A-R domains. These constructs consist of the light-activated Gq/11 coupled melanopsin, mCherry and GCaMP6m for visualization of Ca2+ signals and receptor trafficking, and the 5-HT2A C-terminus for targeting into 5-HT2A-R domains. We show that the specific localization of the GPCR to its receptor domain drastically alters the dynamics and localization of the intracellular Ca2+ signals in different neuronal populations in vitro and in vivo. The CaMello method may be extended to every GPCR coupling to the Gq/11 pathway to help unravel new receptor-specific functions in respect to synaptic plasticity and GPCR localization.


Asunto(s)
Técnicas Biosensibles , Calcio/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Optogenética/métodos , Receptor de Serotonina 5-HT2A/genética , Opsinas de Bastones/genética , Animales , Cerebelo/citología , Cerebelo/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Electrodos Implantados , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , Transporte de Proteínas , Ratas , Ratas Long-Evans , Receptor de Serotonina 5-HT2A/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Opsinas de Bastones/metabolismo , Técnicas Estereotáxicas
5.
Curr Biol ; 26(9): 1206-12, 2016 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-27068418

RESUMEN

G-protein-coupled receptors (GPCRs) represent the major protein family for cellular modulation in mammals. Therefore, various strategies have been developed to analyze the function of GPCRs involving pharmaco- and optogenetic approaches [1, 2]. However, a tool that combines precise control of the activation and deactivation of GPCR pathways and/or neuronal firing with limited phototoxicity is still missing. We compared the biophysical properties and optogenetic application of a human and a mouse melanopsin variant (hOpn4L and mOpn4L) on the control of Gi/o and Gq pathways in heterologous expression systems and mouse brain. We found that GPCR pathways can be switched on/off by blue/yellow light. The proteins differ in their kinetics and wavelength dependence to activate and deactivate G protein pathways. Whereas mOpn4L is maximally activated by very short light pulses, leading to sustained G protein activation, G protein responses of hOpn4L need longer light pulses to be activated and decline in amplitude. Based on the different biophysical properties, brief light activation of mOpn4L is sufficient to induce sustained neuronal firing in cerebellar Purkinje cells (PC), whereas brief light activation of hOpn4L induces AP firing, which declines in frequency over time. Most importantly, mOpn4L-induced sustained firing can be switched off by yellow light. Based on the biophysical properties, hOpn4L and mOpn4L represent the first GPCR optogenetic tools, which can be used to switch GPCR pathways/neuronal firing on an off with temporal precision and limited phototoxicity. We suggest to name these tools moMo and huMo for future optogenetic applications.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Unión al GTP/metabolismo , Opsinas de Bastones/metabolismo , Animales , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica/fisiología , Variación Genética , Humanos , Ratones , Mutación , Células de Purkinje/fisiología , Opsinas de Bastones/genética
6.
Proc Natl Acad Sci U S A ; 111(17): 6479-84, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24733892

RESUMEN

Serotonin 2c receptors (5-HT2c-Rs) are drug targets for certain mental disorders, including schizophrenia, depression, and anxiety. 5-HT2c-Rs are expressed throughout the brain, making it difficult to link behavioral changes to circuit specific receptor expression. Various 5-HT-Rs, including 5-HT2c-Rs, are found in the dorsal raphe nucleus (DRN); however, the function of 5-HT2c-Rs and their influence on the serotonergic signals mediating mood disorders remain unclear. To investigate the role of 5-HT2c-Rs in the DRN in mice, we developed a melanopsin-based optogenetic probe for activation of Gq signals in cellular domains, where 5-HT2c-Rs are localized. Our results demonstrate that precise temporal control of Gq signals in 5-HT2c-R domains in GABAergic neurons upstream of 5-HT neurons provides negative feedback regulation of serotonergic firing to modulate anxiety-like behavior in mice.


Asunto(s)
Ansiedad/fisiopatología , Retroalimentación Fisiológica , Neuronas GABAérgicas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Inhibición Neural , Receptor de Serotonina 5-HT2C/metabolismo , Serotonina/metabolismo , Potenciales de Acción/efectos de la radiación , Animales , Ansiedad/metabolismo , Ansiedad/patología , Calcio/metabolismo , Regulación hacia Abajo/efectos de la radiación , Retroalimentación Fisiológica/efectos de la radiación , Neuronas GABAérgicas/patología , Neuronas GABAérgicas/efectos de la radiación , Células HEK293 , Humanos , Espacio Intracelular/metabolismo , Espacio Intracelular/efectos de la radiación , Luz , Ratones , Inhibición Neural/efectos de la radiación , Optogenética , Estructura Terciaria de Proteína , Núcleos del Rafe/metabolismo , Núcleos del Rafe/efectos de la radiación , Opsinas de Bastones/química , Opsinas de Bastones/metabolismo , Transducción de Señal/efectos de la radiación
7.
Neuron ; 81(6): 1263-1273, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24656249

RESUMEN

G protein-coupled receptors (GPCRs) coupling to Gi/o signaling pathways are involved in the control of important physiological functions, which are difficult to investigate because of the limitation of tools to control the signaling pathway with precise kinetics and specificity. We established two vertebrate cone opsins, short- and long-wavelength opsin, for long-lasting and repetitive activation of Gi/o signaling pathways in vitro and in vivo. We demonstrate for both opsins the repetitive fast, membrane-delimited, ultra light-sensitive, and wavelength-dependent activation of the Gi/o pathway in HEK cells. We also show repetitive control of Gi/o pathway activation in 5-HT1A receptor domains in the dorsal raphe nucleus (DRN) in brain slices and in vivo, which is sufficient to modulate anxiety behavior in mice. Thus, vertebrate cone opsins represent a class of tools for understanding the role of Gi/o-coupled GPCRs in health and disease.


Asunto(s)
Ansiedad/fisiopatología , Conducta Animal , Opsinas de los Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Transducción de Señal/fisiología , Animales , Ansiedad/metabolismo , Conducta Animal/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Humanos , Luz , Ratones , Neuronas/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Opsinas de Bastones/metabolismo
8.
PLoS One ; 7(9): e44724, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22970298

RESUMEN

In the present study we investigated in vivo the effects of pharmacological manipulation of retinal processing on the response properties of direction selective retinal slip cells in the nucleus of the optic tract and dorsal terminal nucleus (NOT-DTN), the key visuomotor interface in the pathway underlying the optokinetic reflex. Employing a moving visual stimulus consisting of either a large dark or light edge we could differentiate direction selective ON and OFF responses in retinal slip cells. To disclose the origin of the retinal slip cells' unexpected OFF response we selectively blocked the retinal ON channels and inactivated the visual cortex by cooling. Cortical cooling had no effect on the direction selectivity of the ON or the OFF response in NOT-DTN retinal slip cells. Blockade of the retinal ON channel with APB led to a loss of the ON and, to a lesser degree, of the OFF response and a reduction in direction selectivity. Subsequent blocking of GABA receptors in the retina with picrotoxin unmasked a vigorous albeit direction unselective OFF response in the NOT-DTN. Disturbing the retinal chloride homeostasis by intraocular injections of bumetanide or furosemide led to a loss of direction selectivity in both the NOT-DTN's ON and the OFF response due to a reduced response in the neuron's preferred direction under bumetanide as well as under furosemide and a slightly increased response in the null direction under bumetanide. Our results indicate that the direction specificity of retinal slip cells in the NOT-DTN of the rat strongly depends on direction selective retinal input which depends on intraretinal chloride homeostasis. On top of the well established input from ON center direction selective ganglion cells we could demonstrate an equally effective input from the retinal OFF system to the NOT-DTN.


Asunto(s)
Retina/fisiología , Simportadores de Cloruro de Sodio-Potasio/efectos de los fármacos , Simportadores/antagonistas & inhibidores , Vías Visuales/fisiología , Animales , Bumetanida/farmacología , Cloruros/metabolismo , Oscuridad , Femenino , Furosemida/farmacología , Homeostasis , Luz , Masculino , Estimulación Luminosa , Picrotoxina/farmacología , Ratas , Ratas Long-Evans , Retina/efectos de los fármacos , Cotransportadores de K Cl
9.
Exp Physiol ; 96(1): 51-6, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21041315

RESUMEN

G-protein-coupled receptors (GPCRs) integrate extracellular cues into intracellular signals to modulate the cellular state. Owing to their diverse modulatory functions, GPCRs represent one of the major drug targets of the pharmaceutical industry. Until now, the characterization and control of GPCRs and their intracellular signalling cascades have mainly relied on chemical compounds, which either activate or inhibit GPCR pathways, albeit with limited receptor and cell-type specificity. Recently, new approaches have been developed to control signalling cascades in cell- and receptor-type-specific ways. The chemical approach focuses on GPCR design and activation by an inert chemical compound, whereas the physical approach uses designer GPCRs and activation by physical stimuli, such as light.


Asunto(s)
Terapia Molecular Dirigida/métodos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal/fisiología , Animales , Diseño de Fármacos , Humanos , Luz , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA