Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(1)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36677514

RESUMEN

For many years, research on the microbial-dissolution of metals from ores or waste materials mainly focussed on the study of acidophilic organisms. However, most acidophilic bioleaching microorganisms have limited tolerance to high chloride concentrations, thereby requiring fresh water for bioleaching operations. There is a growing interest in the use of seawater for leaching purposes, especially in regions with less access to fresh water. Consequently, there is a need to find halophilic organisms with bioleaching potentials. This study investigated the bioleaching potentials of four moderately halophilic sulphur-oxidising bacteria: Thiomicrospira cyclica, Thiohalobacter thiocyanaticus, Thioclava electrotropha and Thioclava pacifica. Results revealed T. electrotropha and T. pacifica as the most promising for bioleaching. Pure cultures of the two Thioclava strains liberated about 30% Co, and between 8-17% Cu, Pb, Zn, K, Cd, and Mn from a mine waste rock sample from the Neves Corvo mine, Portugal. Microwave roasting of the waste rock at 400 and 500 °C improved the bioleaching efficiency of T. electrotropha for Pb (13.7 to 45.7%), Ag (5.3 to 36%) and In (0 to 27.4%). Mineralogical analysis of the bioleached residues using SEM/MLA-GXMAP showed no major difference in the mineral compositions before or after bioleaching by the Thioclava spp. Generally, the bioleaching rates of the Thioclava spp. are quite low compared to that of the conventional acidophilic bioleaching bacteria. Nevertheless, their ability to liberate potential pollutants (metal(loid)s) into solution from mine waste raises environmental concerns. This is due to their relevance in the biogeochemistry of mine waste dumps, as similar neutrophile halophilic sulphur-oxidising organisms (e.g., Halothiobacillus spp.) have been isolated from mine wastes. On the other hand, the use of competent halophilic microorganisms could be the future of bioleaching due to their high tolerance to Cl- ions and their potential to catalyse mineral dissolution in seawater media, instead of fresh water.

2.
RSC Adv ; 12(55): 36046-36062, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36545072

RESUMEN

Modification of metal oxides with organophosphonic acids (PAs) provides the ability to control and tailor the surface properties. The metal oxide phosphonic acid bond (M-O-P) is known to be stable under harsh conditions, making PAs a promising candidate for the recovery of metals from complex acidic leachates. The thiol functional group is an excellent regenerable scavenging group for these applications. However, the research on organophosphonic acid grafting with thiol groups is very limited. In this study, four different metal sorbent materials were designed with different thiol surface coverages. An aqueous-based grafting of 3-mercaptopropylphosphonic acid (3MPPA) on mesoporous TiO2 was employed. Surface grafted thiol groups could be obtained in the range from 0.9 to 1.9 groups per nm2. The different obtained surface properties were studied and correlated to the Pd adsorption performance. High Pd/S adsorption efficiencies were achieved, indicating the presence of readily available sorption sites. A large difference in their selectivity towards Pd removal from a spend automotive catalyst leachate was observed due to the co-adsorption of Fe on the titania support. The highest surface coverage showed the highest selectivity (K d: 530 mL g-1) and adsorption capacity (Q max: 0.32 mmol g-1) towards Pd, while strongly reducing the co-adsorption of Fe on remaining TiO2 sites.

3.
RSC Adv ; 12(4): 2351-2360, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35425251

RESUMEN

The increase in photovoltaic panel installations in Europe will generate vast amounts of waste in the near future. Therefore, it is important to develop new technologies that allow the recycling of end-of-life photovoltaic panels. This material can serve as a secondary resource, not only for precious metals (e.g. silver), but also for base metals. In this work, the extraction and recovery of the base metals copper, zinc and lead from a copper-rich photovoltaic panel residue was investigated. The material was first leached at 80 °C under microwave irradiation with a mixture of hydrochloric acid, sodium chloride and hydrogen peroxide solutions. Based on the Box-Behnken factorial design optimization, it was possible to extract 81.2% of Cu, 96.4% of Zn and 77.6% of Pb, under the following leaching conditions: [HCl] = 0.5 mol L-1, [NaCl] = 200 g L-1, [H2O2] = 7.5 wt% and t = 60 min. Cementation with iron powder at a 1.2 iron-to-copper stoichiometric ratio allowed the recovery of copper nearly quantitatively (99.8%) as a copper-iron sediment. The gas-liquid separation technique of ion flotation was employed to separate lead and zinc from the dilute copper-free leachate. Cetyltrimethylammonium bromide (CTAB), a cationic surfactant, selectively recovered lead (99.4%) over zinc as lead(ii) tetrachloro cetyltrimethylammonium colloid, after eight ion flotation stages and [CTAB]total = 7.2 mmol L-1. The zinc that remained in the solution after the ion flotation step was recovered by precipitation and by adding sodium sulfide at 110% of the stoichiometric amount after removing iron as ferric hydroxide by slowly raising the pH to 3.7.

4.
J Hazard Mater ; 403: 123842, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33264923

RESUMEN

With the number of easily accessible ores depleting, alternate primary and secondary sources are required to meet the increasing demand of economically important metals. Whilst highly abundant, these materials are of lower grade with respect to traditional ores, thus highly selective and sustainable metal extraction technologies are needed to reduce processing costs. Here, we investigated the metal leaching potential of biogenic ammonia produced by a ureolytic strain of Lysinibacillus sphaericus on eight primary and secondary materials, comprised of mining and metallurgical residues, sludges and automotive shredder residues (ASR). For the majority of materials, moderate to high yields (30-70%) and very high selectivity (>97% against iron) of copper and zinc were obtained with 1 mol L-1 total ammonia. Optimal leaching was achieved and further refined for the ASR in a two-step indirect leaching system with biogenic ammonia. Copper leaching was the result of local corrosion and differences in leaching against the synthetic (NH4)2CO3 control could be accounted for by pH shifts from microbial metabolism, subsequently altering free NH3 required for coordination. These results provide important findings for future sustainable metal recovery technologies from secondary materials.


Asunto(s)
Cobre , Zinc , Amoníaco , Bacillaceae , Minerales
5.
J Hazard Mater ; 398: 122814, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32768856

RESUMEN

Microwave (MW) assisted chloride leaching was studied to remove valuable and heavy metals from two zinc plant residues, i.e. goethite sludge and Zn-leach product. For both materials, NaCl leaching parameters, such as temperature, NaCl concentration, leaching time and addition of acid, were optimized. For goethite sludge, the best efficiencies for Cu (45-47 %), Pb (83-90 %), and Zn (47-58 %) extraction, with a minimal dissolution of matrix elements, were obtained at 200 °C, 300 g/L NaCl and L/S 10. At short leaching times (5 min) the maximal leachability of Cu and Zn was reached, while at longer leaching time (60 min) the Pb extraction increased to 90 ± 1%. Zn leaching was limited due to the presence of stable franklinite (ZnFe2O4). NaCl (280 g/L) leaching of Zn-leach product required the addition of 1 M HCl to improve metal leaching to Ag 52 ± 3 %, Bi 83 ± 1 %, Cd 82 ± 4 %, Sb 39 ± 1 %, Zn 71 ± 2 % at 200 °C, L/S 10 for 30 min. Consequently, matrix dissolution was enhanced. Metal associations in Zn-leach product were statistically investigated. The environmental impact of the MW leached materials was evaluated by a one stage leaching test, which showed a significant overall reduction in heavy metal leachability compared to untreated materials.


Asunto(s)
Metales Pesados , Zinc , Cloruros , Microondas , Aguas del Alcantarillado
6.
RSC Adv ; 10(12): 7328-7335, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35493887

RESUMEN

Several deep-eutectic solvents (DESs) were tested for the valorisation of goethite residue produced by the zinc industry. The objective of the work was to selectively recover zinc from the iron-rich matrix using deep-eutectic solvents as lixiviants. The effect of the type of hydrogen bond donor and hydrogen bond acceptor of the deep-eutectic solvent on the leaching efficiency was studied. Levulinic acid-choline chloride (x ChCl = 0.33) (LevA-ChCl) could selectively leach zinc from the iron-rich matrix, and it was selected as the best-performing system to be used in further study. The leaching process was optimised in terms of temperature, contact time, liquid-to-solid ratio and water content of the deep-eutectic solvent. The role of the choline cation on the leaching process was investigated by considering the leaching properties of a LevA-CaCl2 mixture. The goethite residue was also leached with pure levulinic acid. The results were compared to a purely hydrometallurgical approach using sulphuric acid leaching. Leaching with LevA-ChCl resulted in higher selectivity compared to the conventional "hot leaching" with 80 g L-1 sulphuric acid. Furthermore, a slightly higher zinc recovery and comparable selectivity for zinc over iron were achieved with LevA-ChCl compared to conventional "neutral leaching" with 10 g L-1 sulphuric acid.

7.
Waste Manag ; 55: 31-7, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27311350

RESUMEN

Round robin test results of a percolation column leaching procedure (CEN/TS 14405:2004), organised by the Flemish Institute for Technological Research (VITO), over a time span of 13years with a participation of between 8 and 18 different laboratories are presented and discussed. Focus is on the leachability of heavy metals As, Cd, Cr, Cu, Hg, Ni, Pb and Zn from mineral waste materials. By performing statistical analyses on the obtained results, insight into the reproducibility and repeatability of the column leaching test is gathered. A ratio of 1:3 between intra- and inter-laboratory variability is found. The reproducibility of the eluates' element concentrations differ significantly between elements, materials and fractions (i.e. different liquid-to-solid ratios). The reproducibility is discussed in light of the application of the column leaching test for legal and environmental policy purposes. In addition, the performances of laboratories are compared.


Asunto(s)
Eliminación de Residuos/métodos , Contaminantes Químicos del Agua/análisis , Metales Pesados/análisis , Reproducibilidad de los Resultados , Contaminantes del Suelo/análisis , Instalaciones de Eliminación de Residuos
10.
Proc Natl Acad Sci U S A ; 107(52): 22457-62, 2010 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-21148100

RESUMEN

It is becoming common practice to partition glass-forming liquids into two classes based on the dependence of the shear viscosity η on temperature T. In an Arrhenius plot, ln η vs 1/T, a strong liquid shows linear behavior whereas a fragile liquid exhibits an upward curvature [super-Arrhenius (SA) behavior], a situation customarily described by using the Vogel-Fulcher-Tammann law. Here we analyze existing data of the transport coefficients of 84 glass-forming liquids. We show the data are consistent, on decreasing temperature, with the onset of a well-defined dynamical crossover η(×), where η(×) has the same value, η(×) ≈ 10(3) Poise, for all 84 liquids. The crossover temperature, T(×), located well above the calorimetric glass transition temperature T(g), marks significant variations in the system thermodynamics, evidenced by the change of the SA-like T dependence above T(×) to Arrhenius behavior below T(×). We also show that below T(×) the familiar Stokes-Einstein relation D/T ∼ η(-1) breaks down and is replaced by a fractional form D/T ∼ η(-ζ), with ζ ≈ 0.85.


Asunto(s)
Vidrio/química , Solventes/química , Termodinámica , Temperatura de Transición , Algoritmos , Calorimetría , Transición de Fase , Viscosidad
11.
J Phys Chem B ; 114(5): 1870-8, 2010 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-20058894

RESUMEN

Using nuclear magnetic resonance and quasi-elastic neutron scattering spectroscopic techniques, we obtain experimental evidence of a well-defined dynamic crossover temperature T(L) in supercooled water. We consider three different geometrical environments: (i) water confined in a nanotube (quasi-one-dimensional water), (ii) water in the first hydration layer of the lysozyme protein (quasi-two-dimensional water), and (iii) water in a mixture with methanol at a methanol molar fraction of x = 0.22 (quasi-three-dimensional water). The temperature predicted using a power law approach to analyze the bulk water viscosity in the super-Arrhenius regime defines the fragile-to-strong transition and the Stokes-Einstein relation breakdown recently observed in confined water. Our experiments show that these observed processes are independent of the system dimension d and are instead caused by the onset of an extended hydrogen-bond network that governs the dynamical properties of water as it approaches dynamic arrest.


Asunto(s)
Metanol/química , Agua/química , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Muramidasa/química , Nanotubos/química , Temperatura , Viscosidad
12.
J Phys Chem B ; 112(34): 10449-54, 2008 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-18672927

RESUMEN

Proton nuclear magnetic resonance (1H NMR) experiments have been performed to measure the spin-lattice, T1, and spin-spin, T2, relaxation times of the three functional groups in water/methanol mixtures at different methanol molar fractions (XMeOH=0, 0.04, 0.1, 0.24, 0.5, 1) as a function of temperature in the range 205 K

Asunto(s)
Espectroscopía de Resonancia Magnética , Metanol/química , Agua/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...