Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 189: 107933, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37769827

RESUMEN

As some of the smallest vertebrates, yet largest producers of consumed reef biomass, cryptobenthic reef fishes serve a disproportionate role in reef ecosystems and are one of the most poorly understood groups of fish. The blenny genera Hypleurochilus and Parablennius are currently considered paraphyletic and the interrelationships of Parablennius have been the focus of recent phylogenetic studies. However, the interrelationships of Hypleurochilus remain understudied. This genus is transatlantically distributed and comprises 11 species with a convoluted taxonomic history. In this study, relationships for ten Hypleurochilus species are resolved using multi-locus nuclear and mtDNA sequence data, morphological data, and mined COI barcode data.  Mitochondrial and nuclear sequence data from 61 individuals collected from the western Atlantic and northern Gulf of Mexico (N. GoM) delimit seven species into a temperate clade, a tropical clade, and a third distinct lineage. This lineage, herein referred to as H. cf. aequipinnis, may represent a species of Hypleurochilus whose range has expanded into the N. GoM. Inclusion of publicly available COI sequence for an additional three species provides further phylogenetic resolution. H. bananensis forms a new eastern Atlantic clade with H. cf. aequipinnis, providing further evidence for a western Atlantic range expansion. Single marker COI delimitation was unable to elucidate the relationships between H. springeri/H. pseudoaequipinnis and between H. multifilis/H. caudovittatus due to incomplete lineage sorting. Mitochondrial data are also unable to accurately resolve the placement of H. bermudensis. However, a comprehensive approach using multi-locus phylogenetic and species delimitation methods was able to resolve these relationships. While mining publicly available sequence data allowed for the inclusion of an increased number of species in the analysis and a more comprehensive phylogeny, it was not without drawbacks, as a handful of sequences are potentially mis-identified. Overall, we find that the recent divergence of some species within this genus and potential introgression events confound the results of single locus delimitation methods, yet a combination of single and multi-locus analyses has allowed for insights into the biogeography of this genus and uncovered a potential transatlantic range expansion.


Asunto(s)
Ecosistema , Perciformes , Animales , Filogenia , Golfo de México , ADN Mitocondrial/genética , Peces/genética , Teorema de Bayes
2.
Mitochondrial DNA B Resour ; 7(2): 353-355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35174288

RESUMEN

The blennies, Acanthemblemaria spinosa (Chaenopsidae) and Enneanectes altivelis (Tripterygiidae) are representative members of two families spanning the deepest node of the Blennioidei tree. The mitogenomes of 16,507 bp for A. spinosa and 16,529 bp for E. altivelis each consisted of 37 genes and one control loop region. Phylogenetic analysis confirmed the placement of Chaenopsidae and Tripterygiidae within the Blenniiformes, however, there was instability in the placement of the triplefins between reconstruction methods, likely due to low taxon sampling. These mitogenomes represent an important milestone in uncovering relationships within Blenniiformes and Ovalentaria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA