Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3342, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688917

RESUMEN

The polygenic architecture of schizophrenia implicates several molecular pathways involved in synaptic function. However, it is unclear how polygenic risk funnels through these pathways to translate into syndromic illness. Using tensor decomposition, we analyze gene co-expression in the caudate nucleus, hippocampus, and dorsolateral prefrontal cortex of post-mortem brain samples from 358 individuals. We identify a set of genes predominantly expressed in the caudate nucleus and associated with both clinical state and genetic risk for schizophrenia that shows dopaminergic selectivity. A higher polygenic risk score for schizophrenia parsed by this set of genes predicts greater dopamine synthesis in the striatum and greater striatal activation during reward anticipation. These results translate dopamine-linked genetic risk variation into in vivo neurochemical and hemodynamic phenotypes in the striatum that have long been implicated in the pathophysiology of schizophrenia.


Asunto(s)
Cuerpo Estriado , Dopamina , Esquizofrenia , Humanos , Dopamina/metabolismo , Dopamina/biosíntesis , Esquizofrenia/genética , Esquizofrenia/metabolismo , Masculino , Femenino , Cuerpo Estriado/metabolismo , Adulto , Núcleo Caudado/metabolismo , Transducción de Señal , Persona de Mediana Edad , Hipocampo/metabolismo , Herencia Multifactorial , Predisposición Genética a la Enfermedad , Corteza Prefontal Dorsolateral/metabolismo , Recompensa
2.
Mol Psychiatry ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532008

RESUMEN

Cognitive dysfunctions are core-enduring symptoms of schizophrenia, with important sex-related differences. Genetic variants of the DTBPN1 gene associated with reduced dysbindin-1 protein (Dys) expression negatively impact cognitive functions in schizophrenia through a functional epistatic interaction with Catechol-O-methyltransferase (COMT). Dys is involved in the trafficking of dopaminergic receptors, crucial for prefrontal cortex (PFC) signaling regulation. Moreover, dopamine signaling is modulated by estrogens via inhibition of COMT expression. We hypothesized a sex dimorphism in Dys-related cognitive functions dependent on COMT and estrogen levels. Our multidisciplinary approach combined behavioral-molecular findings on genetically modified mice, human postmortem Dys expression data, and in vivo fMRI during a working memory task performance. We found cognitive impairments in male mice related to genetic variants characterized by reduced Dys protein expression (pBonferroni = 0.0001), as well as in male humans through a COMT/Dys functional epistatic interaction involving PFC brain activity during working memory (t(23) = -3.21; pFDR = 0.004). Dorsolateral PFC activity was associated with lower working memory performance in males only (p = 0.04). Also, male humans showed decreased Dys expression in dorsolateral PFC during adulthood (pFDR = 0.05). Female Dys mice showed preserved cognitive performances with deficits only with a lack of estrogen tested in an ovariectomy model (pBonferroni = 0.0001), suggesting that genetic variants reducing Dys protein expression could probably become functional in females when the protective effect of estrogens is attenuated, i.e., during menopause. Overall, our results show the differential impact of functional variants of the DTBPN1 gene interacting with COMT on cognitive functions across sexes in mice and humans, underlying the importance of considering sex as a target for patient stratification and precision medicine in schizophrenia.

3.
Psychol Med ; 54(8): 1876-1885, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38305128

RESUMEN

BACKGROUND: Previous evidence suggests that early life complications (ELCs) interact with polygenic risk for schizophrenia (SCZ) in increasing risk for the disease. However, no studies have investigated this interaction on neurobiological phenotypes. Among those, anomalous emotion-related brain activity has been reported in SCZ, even if evidence of its link with SCZ-related genetic risk is not solid. Indeed, it is possible this relationship is influenced by non-genetic risk factors. Thus, this study investigated the interaction between SCZ-related polygenic risk and ELCs on emotion-related brain activity. METHODS: 169 healthy participants (HP) in a discovery and 113 HP in a replication sample underwent functional magnetic resonance imaging (fMRI) during emotion processing, were categorized for history of ELCs and genome-wide genotyped. Polygenic risk scores (PRSs) were computed using SCZ-associated variants considering the most recent genome-wide association study. Furthermore, 75 patients with SCZ also underwent fMRI during emotion processing to verify consistency of their brain activity patterns with those associated with risk factors for SCZ in HP. RESULTS: Results in the discovery and replication samples indicated no effect of PRSs, but an interaction between PRS and ELCs in left ventrolateral prefrontal cortex (VLPFC), where the greater the activity, the greater PRS only in presence of ELCs. Moreover, SCZ had greater VLPFC response than HP. CONCLUSIONS: These results suggest that emotion-related VLPFC response lies in the path from genetic and non-genetic risk factors to the clinical presentation of SCZ, and may implicate an updated concept of intermediate phenotype considering early non-genetic factors of risk for SCZ.


Asunto(s)
Emociones , Imagen por Resonancia Magnética , Herencia Multifactorial , Esquizofrenia , Humanos , Esquizofrenia/fisiopatología , Esquizofrenia/genética , Esquizofrenia/diagnóstico por imagen , Masculino , Femenino , Adulto , Emociones/fisiología , Adulto Joven , Estudio de Asociación del Genoma Completo , Factores de Riesgo , Predisposición Genética a la Enfermedad , Corteza Prefrontal/fisiopatología , Corteza Prefrontal/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Voluntarios Sanos , Persona de Mediana Edad , Puntuación de Riesgo Genético
4.
Artículo en Inglés | MEDLINE | ID: mdl-38000716

RESUMEN

BACKGROUND: miR-137 is a microRNA involved in brain development, regulating neurogenesis and neuronal maturation. Genome-wide association studies have implicated miR-137 in schizophrenia risk but do not explain its involvement in brain function and underlying biology. Polygenic risk for schizophrenia mediated by miR-137 targets is associated with working memory, although other evidence points to emotion processing. We characterized the functional brain correlates of miR-137 target genes associated with schizophrenia while disentangling previously reported associations of miR-137 targets with working memory and emotion processing. METHODS: Using RNA sequencing data from postmortem prefrontal cortex (N = 522), we identified a coexpression gene set enriched for miR-137 targets and schizophrenia risk genes. We validated the relationship of this set to miR-137 in vitro by manipulating miR-137 expression in neuroblastoma cells. We translated this gene set into polygenic scores of coexpression prediction and associated them with functional magnetic resonance imaging activation in healthy volunteers (n1 = 214; n2 = 136; n3 = 2075; n4 = 1800) and with short-term treatment response in patients with schizophrenia (N = 427). RESULTS: In 4652 human participants, we found that 1) schizophrenia risk genes were coexpressed in a biologically validated set enriched for miR-137 targets; 2) increased expression of miR-137 target risk genes was mediated by low prefrontal miR-137 expression; 3) alleles that predict greater gene set coexpression were associated with greater prefrontal activation during emotion processing in 3 independent healthy cohorts (n1, n2, n3) in interaction with age (n4); and 4) these alleles predicted less improvement in negative symptoms following antipsychotic treatment in patients with schizophrenia. CONCLUSIONS: The functional translation of miR-137 target gene expression linked with schizophrenia involves the neural substrates of emotion processing.


Asunto(s)
MicroARNs , Esquizofrenia , Humanos , Estudio de Asociación del Genoma Completo , Encéfalo , MicroARNs/genética , MicroARNs/metabolismo , Emociones
5.
bioRxiv ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37786720

RESUMEN

Schizophrenia (SCZ) is characterized by a polygenic risk architecture implicating diverse molecular pathways important for synaptic function. However, how polygenic risk funnels through these pathways to translate into syndromic illness is unanswered. To evaluate biologically meaningful pathways of risk, we used tensor decomposition to characterize gene co-expression in post-mortem brain (of neurotypicals: N=154; patients with SCZ: N=84; and GTEX samples N=120) from caudate nucleus (CN), hippocampus (HP), and dorsolateral prefrontal cortex (DLPFC). We identified a CN-predominant gene set showing dopaminergic selectivity that was enriched for genes associated with clinical state and for genes associated with SCZ risk. Parsing polygenic risk score for SCZ based on this specific gene set (parsed-PRS), we found that greater pathway-specific SCZ risk predicted greater in vivo striatal dopamine synthesis capacity measured by [ 18 F]-FDOPA PET in three independent cohorts of neurotypicals and patients (total N=235) and greater fMRI striatal activation during reward anticipation in two additional independent neurotypical cohorts (total N=141). These results reveal a 'bench to bedside' translation of dopamine-linked genetic risk variation in driving in vivo striatal neurochemical and hemodynamic phenotypes that have long been implicated in the pathophysiology of SCZ.

6.
Proc Natl Acad Sci U S A ; 120(32): e2221533120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37527347

RESUMEN

Alterations in fMRI-based brain functional network connectivity (FNC) are associated with schizophrenia (SCZ) and the genetic risk or subthreshold clinical symptoms preceding the onset of SCZ, which often occurs in early adulthood. Thus, age-sensitive FNC changes may be relevant to SCZ risk-related FNC. We used independent component analysis to estimate FNC from childhood to adulthood in 9,236 individuals. To capture individual brain features more accurately than single-session fMRI, we studied an average of three fMRI scans per individual. To identify potential familial risk-related FNC changes, we compared age-related FNC in first-degree relatives of SCZ patients mostly including unaffected siblings (SIB) with neurotypical controls (NC) at the same age stage. Then, we examined how polygenic risk scores for SCZ influenced risk-related FNC patterns. Finally, we investigated the same risk-related FNC patterns in adult SCZ patients (oSCZ) and young individuals with subclinical psychotic symptoms (PSY). Age-sensitive risk-related FNC patterns emerge during adolescence and early adulthood, but not before. Young SIB always followed older NC patterns, with decreased FNC in a cerebellar-occipitoparietal circuit and increased FNC in two prefrontal-sensorimotor circuits when compared to young NC. Two of these FNC alterations were also found in oSCZ, with one exhibiting reversed pattern. All were linked to polygenic risk for SCZ in unrelated individuals (R2 varied from 0.02 to 0.05). Young PSY showed FNC alterations in the same direction as SIB when compared to NC. These results suggest that age-related neurotypical FNC correlates with genetic risk for SCZ and is detectable with MRI in young participants.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Adulto , Adolescente , Humanos , Niño , Adulto Joven , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Factores de Riesgo
7.
Sci Adv ; 9(15): eade2812, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37058565

RESUMEN

Schizophrenia is a neurodevelopmental brain disorder whose genetic risk is associated with shifting clinical phenomena across the life span. We investigated the convergence of putative schizophrenia risk genes in brain coexpression networks in postmortem human prefrontal cortex (DLPFC), hippocampus, caudate nucleus, and dentate gyrus granule cells, parsed by specific age periods (total N = 833). The results support an early prefrontal involvement in the biology underlying schizophrenia and reveal a dynamic interplay of regions in which age parsing explains more variance in schizophrenia risk compared to lumping all age periods together. Across multiple data sources and publications, we identify 28 genes that are the most consistently found partners in modules enriched for schizophrenia risk genes in DLPFC; twenty-three are previously unidentified associations with schizophrenia. In iPSC-derived neurons, the relationship of these genes with schizophrenia risk genes is maintained. The genetic architecture of schizophrenia is embedded in shifting coexpression patterns across brain regions and time, potentially underwriting its shifting clinical presentation.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/genética , Encéfalo , Corteza Prefrontal , Núcleo Caudado
8.
Biol Psychiatry ; 94(2): 121-130, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-36740470

RESUMEN

The clinically heterogeneous presentation of schizophrenia is compounded by the heterogeneity of risk factors and neurobiological correlates of the disorder. Genome-wide association studies in schizophrenia have uncovered a remarkably high number of genetic variants, but the biological pathways they impact upon remain largely unidentified. Among the diverse methodological approaches employed to provide a more granular understanding of genetic risk for schizophrenia, the use of biological labels, such as gene ontologies, regulome approaches, and gene coexpression have all provided novel perspectives into how genetic risk translates into the neurobiology of schizophrenia. Here, we review the salient aspects of parsing polygenic risk for schizophrenia into biological pathways. We argue that parsed scores, compared to standard polygenic risk scores, may afford a more biologically plausible and accurate physiological modeling of the different dimensions involved in translating genetic risk into brain mechanisms, including multiple brain regions, cell types, and maturation stages. We discuss caveats, opportunities, and pitfalls inherent in the parsed risk approach.


Asunto(s)
Estudio de Asociación del Genoma Completo , Esquizofrenia , Humanos , Esquizofrenia/genética , Encéfalo , Factores de Riesgo , Herencia Multifactorial/genética , Predisposición Genética a la Enfermedad/genética
9.
Sci Rep ; 12(1): 12610, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35871219

RESUMEN

The D2 dopamine receptor (D2R) is the primary site of the therapeutic action of antipsychotics and is involved in essential brain functions relevant to schizophrenia, such as attention, memory, motivation, and emotion processing. Moreover, the gene coding for D2R (DRD2) has been associated with schizophrenia at a genome-wide level. Recent studies have shown that a polygenic co-expression index (PCI) predicting the brain-specific expression of a network of genes co-expressed with DRD2 was associated with response to antipsychotics, brain function during working memory in patients with schizophrenia, and with the modulation of prefrontal cortex activity after pharmacological stimulation of D2 receptors. We aimed to investigate the relationship between the DRD2 gene network and in vivo striatal dopaminergic function, which is a phenotype robustly associated with psychosis and schizophrenia. To this aim, a sample of 92 healthy subjects underwent 18F-DOPA PET and was genotyped for genetic variations indexing the co-expression of the DRD2-related genetic network in order to calculate the PCI for each subject. The PCI was significantly associated with whole striatal dopamine synthesis capacity (p = 0.038). Exploratory analyses on the striatal subdivisions revealed a numerically larger effect size of the PCI on dopamine function for the associative striatum, although this was not significantly different than effects in other sub-divisions. These results are in line with a possible relationship between the DRD2-related co-expression network and schizophrenia and extend it by identifying a potential mechanism involving the regulation of dopamine synthesis. Future studies are needed to clarify the molecular mechanisms implicated in this relationship.


Asunto(s)
Antipsicóticos , Dopamina , Antipsicóticos/metabolismo , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Redes Reguladoras de Genes , Humanos , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
10.
Eur Psychiatry ; 64(1): e39, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33866994

RESUMEN

BACKGROUND: Genome-Wide Association Studies (GWASs) have identified several genes associated with Schizophrenia (SCZ) and exponentially increased knowledge on the genetic basis of the disease. In addition, products of GWAS genes interact with neuronal factors coded by genes lacking association, such that this interaction may confer risk for specific phenotypes of this brain disorder. In this regard, fragile X mental retardation syndrome-related 1 (FXR1) gene has been GWAS associated with SCZ. FXR1 protein is regulated by glycogen synthase kinase-3ß (GSK3ß), which has been implicated in pathophysiology of SCZ and response to antipsychotics (APs). rs496250 and rs12630592, two eQTLs (Expression Quantitative Trait Loci) of FXR1 and GSK3ß, respectively, interact on emotion stability and amygdala/prefrontal cortex activity during emotion processing. These two phenotypes are associated with Negative Symptoms (NSs) of SCZ suggesting that the interaction between these SNPs may also affect NS severity and responsiveness to medication. METHODS: To test this hypothesis, in two independent samples of patients with SCZ, we investigated rs496250 by rs12630592 interaction on NS severity and response to APs. We also tested a putative link between APs administration and FXR1 expression, as already reported for GSK3ß expression. RESULTS: We found that rs496250 and rs12630592 interact on NS severity. We also found evidence suggesting interaction of these polymorphisms also on response to APs. This interaction was not present when looking at positive and general psychopathology scores. Furthermore, chronic olanzapine administration led to a reduction of FXR1 expression in mouse frontal cortex. DISCUSSION: Our findings suggest that, like GSK3ß, FXR1 is affected by APs while shedding new light on the role of the FXR1/GSK3ß pathway for NSs of SCZ.


Asunto(s)
Antipsicóticos , Glucógeno Sintasa Quinasa 3 beta , Proteínas de Unión al ARN , Esquizofrenia , Animales , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Glucógeno Sintasa Quinasa 3 beta/genética , Humanos , Ratones , Polimorfismo de Nucleótido Simple , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/uso terapéutico , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...