Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Autoimmun ; 144: 103183, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38401466

RESUMEN

Chronic nonbacterial osteomyelitis (CNO), an autoinflammatory bone disease primarily affecting children, can cause pain, hyperostosis and fractures, affecting quality-of-life and psychomotor development. This study investigated CNO-associated variants in P2RX7, encoding for the ATP-dependent trans-membrane K+ channel P2X7, and their effects on NLRP3 inflammasome assembly. Whole exome sequencing in two related transgenerational CNO patients, and target sequencing of P2RX7 in a large CNO cohort (N = 190) were conducted. Results were compared with publicly available datasets and regional controls (N = 1873). Findings were integrated with demographic and clinical data. Patient-derived monocytes and genetically modified THP-1 cells were used to investigate potassium flux, inflammasome assembly, pyroptosis, and cytokine release. Rare presumably damaging P2RX7 variants were identified in two related CNO patients. Targeted P2RX7 sequencing identified 62 CNO patients with rare variants (32.4%), 11 of which (5.8%) carried presumably damaging variants (MAF <1%, SIFT "deleterious", Polyphen "probably damaging", CADD >20). This compared to 83 of 1873 controls (4.4%), 36 with rare and presumably damaging variants (1.9%). Across the CNO cohort, rare variants unique to one (Median: 42 versus 3.7) or more (≤11 patients) participants were over-represented when compared to 190 randomly selected controls. Patients with rare damaging variants more frequently experienced gastrointestinal symptoms and lymphadenopathy while having less spinal, joint and skin involvement (psoriasis). Monocyte-derived macrophages from patients, and genetically modified THP-1-derived macrophages reconstituted with CNO-associated P2RX7 variants exhibited altered potassium flux, inflammasome assembly, IL-1ß and IL-18 release, and pyroptosis. Damaging P2RX7 variants occur in a small subset of CNO patients, and rare P2RX7 variants may represent a CNO risk factor. Observations argue for inflammasome inhibition and/or cytokine blockade and may allow future patient stratification and individualized care.


Asunto(s)
Inflamasomas , Osteomielitis , Humanos , Citocinas , Inflamasomas/genética , Inflamasomas/metabolismo , Osteomielitis/genética , Potasio , Piroptosis , Receptores Purinérgicos P2X7/genética
2.
Genes Immun ; 24(5): 263-269, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37573430

RESUMEN

Nebulized hypertonic saline (3-7%) is commonly used to increase mucociliary clearance in patients with chronic airway disease and/or virus infections. However, altered salt concentrations may contribute to inflammatory responses. The aim of this study was to investigate whether 500 mM NaCl (3%) triggers inflammation in human macrophages and identify the molecular mechanisms involved. NaCl-induced pyroptosis, IL-1ß, IL-18 and ASC speck release were measured in primary human monocyte-derived macrophages. Treatment with the recombinant IL-1 receptor antagonist anakinra or the NLRP3 inhibitor MCC950 did not affect NaCl-mediated inflammasome assembly. Knock-down of NLRP1 expression, but not of NLRP3 and NLRC4, reduced NaCl-induced pyroptosis, pro-inflammatory cytokine and ASC speck release from human THP-1-derived macrophages. Data from this study suggest that 3% NaCl-induced inflammatory responses in human macrophages depend on NLRP1 and inflammasome assembly. Targeting inflammation in addition to inhalation with hypertonic saline may benefit patients with inflammatory airway disease.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Cloruro de Sodio/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Interleucina-1beta , Proteínas NLR/metabolismo
3.
Mucosal Immunol ; 16(6): 776-787, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37574128

RESUMEN

Young age and high vitamin D plasma levels have been associated with lower SARS-CoV-2 infection risk and favourable disease outcomes. This study investigated mechanisms associated with differential responses to SARS-CoV-2 across age groups and effects of vitamin D. Nasal epithelia were collected from healthy children and adults and cultured for four weeks at the air-liquid interface with and without vitamin D. Gene expression and DNA methylation were investigated. Surface protein expression was confirmed by immunofluorescence while vitamin D receptor recruitment to the DNA was analysed through chromatin immunoprecipitation. HEp-2 cells were used for protein co-immunoprecipitation and luciferase reporter assays. Compared to children, airway epithelia from adults show higher viral RNA recovery following infection. This was associated with higher ANPEP/CD13, reduced type I interferon expression, and differential DNA methylation. In cells from adults, exposure to vitamin D reduced TTLL-12 expression, a negative regulator of the interferon response. This was mediated by vitamin D receptor recruitment to TTLL12, where it instructs DNA methylation through DNA methyltransferase 1. This study links age-dependent differential expression of CD13 and type I interferon to variable infection of upper airway epithelia. Furthermore, it provides molecular evidence for vitamin D reducing viral replication by inhibiting TTLL-12.


Asunto(s)
COVID-19 , Interferón Tipo I , Adulto , Niño , Humanos , Vitamina D/metabolismo , Receptores de Calcitriol/metabolismo , SARS-CoV-2/metabolismo , Vitaminas , ADN
4.
Front Pediatr ; 8: 585275, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33282799

RESUMEN

Cystic fibrosis (CF) is an autosomal-recessive multi-organ disease characterized by airways obstruction, recurrent infections, and systemic inflammation. Vasculitis is a severe complication of CF that affects 2-3% of CF patients and is generally associated with poor prognosis. Various pathogenic mechanisms may be involved in the development of CF-related vasculitis. Bacterial colonization leads to persistent activation of neutrophilic granulocytes, inflammation and damage, contributing to the production of antineutrophil cytoplasmic autoantibodies (ANCAs). The presence of ANCA may on the other hand predispose to bacterial colonization and infection, likely entertaining a vicious circle amplifying inflammation and damage. As a result, in CF-associated vasculitis, ongoing inflammation, immune cell activation, the presence of pathogens, and the use of numerous medications may lead to immune complex formation and deposition, subsequently causing leukocytoclastic vasculitis. Published individual case reports and small case series suggest that patients with CF-associated vasculitis require immune modulating treatment, including non-steroidal anti-inflammatory drugs (NSAIDs), corticosteroids, hydroxychloroquine, and/or disease-modifying anti-rheumatic drugs (DMARDs). As immunosuppression increases the risk of infection and/or malignancy, which are both already increased in people with CF, possible alternative medications may involve the blockade of individual cytokine or inflammatory pathways, or the use of novel CFTR modulators. This review summarizes molecular alterations involved in CF-associated vasculitis, clinical presentation, and complications, as well as currently available and future treatment options.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...