Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Biol ; 18(12): 7521-7, 1998 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9819437

RESUMEN

tRNAs encoded on the mitochondrial DNA of Physarum polycephalum and Didymium nigripes require insertional editing for their maturation. Editing consists of the specific insertion of a single cytidine or uridine relative to the mitochondrial DNA sequence encoding the tRNA. Editing sites are at 14 different locations in nine tRNAs. Cytidine insertion sites can be located in any of the four stems of the tRNA cloverleaf and usually create a G. C base pair. Uridine insertions have been identified in the T loop of tRNALys from Didymium and tRNAGlu from Physarum. In both tRNAs, the insertion creates the GUUC sequence, which is converted to GTPsiC (Psi = pseudouridine) in most tRNAs. This type of tRNA editing is different from other, previously described types of tRNA editing and resembles the mRNA and rRNA editing in Physarum and Didymium. Analogous tRNAs in Physarum and Didymium have editing sites at different locations, indicating that editing sites have been lost, gained, or both since the divergence of Physarum and Didymium. Although cDNAs derived from single tRNAs are generally fully edited, cDNAs derived from unprocessed polycistronic tRNA precursors often lack some of the editing site insertions. This enrichment of partially edited sequences in unprocessed tRNAs may indicate that editing is required for tRNA processing or at least that RNA editing occurs as an early event in tRNA synthesis.


Asunto(s)
Mixomicetos/genética , Physarum/genética , Edición de ARN/genética , ARN Protozoario/genética , ARN de Transferencia/genética , ARN/genética , Animales , Secuencia de Bases , Citidina/genética , ADN Complementario/genética , ADN Mitocondrial/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Mitocondrial , Alineación de Secuencia , Uridina/genética
2.
EMBO J ; 13(1): 232-40, 1994 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-8306965

RESUMEN

Post-transcriptional insertion, substitution or deletion of nucleotides in RNA (RNA editing) has been observed in RNAs from a number of organisms but always in messenger RNA or transfer RNA. We report here that the 17S rRNA of the mitochondrial ribosome of Physarum polycephalum is edited at 40 sites with single cytidine insertions. The locations of the editing sites are fairly evenly distributed throughout the RNA and do not correspond to any obvious feature of the primary sequence or secondary structure. In addition to these cytidine editing sites are editing sites in which a nucleotide other than cytidine is inserted. At two sites a uridine is inserted and at two sites adenosine residues are inserted. This is the first report of mixed nucleotide insertional editing. These results imply that the editing mechanism in Physarum may be different from those proposed for the kinetoplastid protozoa.


Asunto(s)
Physarum polycephalum/genética , Edición de ARN , ARN Ribosómico/metabolismo , Animales , Secuencia de Bases , ADN Mitocondrial , Escherichia coli/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Plantas/genética , ARN Ribosómico/química , Alineación de Secuencia
3.
Semin Cell Biol ; 4(4): 261-6, 1993 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-7694673

RESUMEN

RNA produced from a number of genes on the mitochondrial (mt) DNA of Physarum polycephalum have nucleotides inserted at specific sites in their sequence. These insertions are spaced at approximately 25 nucleotide intervals and create open reading frames in mRNA and functional structure in tRNAs and rRNAs. Although most of the insertions at a site are single cytidines; single uridines and certain dinucleotides containing adenosine and guanosine as well as cytidine and uridine are also occasionally inserted at certain sites. This mixed nucleotide insertional RNA editing is unique among currently characterized editing systems.


Asunto(s)
Physarum polycephalum/genética , Edición de ARN , ARN/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN , Datos de Secuencia Molecular , Physarum polycephalum/enzimología , Physarum polycephalum/ultraestructura , ARN Mitocondrial
4.
EMBO J ; 10(9): 2653-9, 1991 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-1714386

RESUMEN

The onset of S-phase and M-phase in both Schizosaccharomyces pombe and Saccharomyces cerevisiae requires the function of the cdc2/CDC28 gene product, p34, a serine-threonine protein kinase. A human homolog, p34cdc2, was identified by functional complementation of the S.pombe cdc2 mutation (Lee and Nurse, 1987). Using a human cDNA expression library to search for suppressors of cdc28 mutations in S. cerevisiae, we have identified a second functional p34 homolog, CDK2 cell division kinase). This gene is expressed as a 2.1 kb transcript encoding a polypeptide of 298 amino acids. This protein retains nearly all of the amino acids highly conserved among previously identified p34 homologs from other species, but is considerably divergent from all previous p34cdc2 homologs, approximately 65% identity. This gene encodes the human homolog of the Xenopus Eg1 gene, sharing 89% amino acid identity, and defines a second sub-family of CDC2 homologs. A second chromosomal mutation which arose spontaneously was required to allow complementation of the cdc28-4 mutation by CDK2. This mutation blocked the ability of this strain to mate. These results suggest that the machinery controlling the human cell cycle is more complex than that for fission and budding yeast.


Asunto(s)
Proteína Quinasa CDC2/genética , Quinasas CDC2-CDC28 , Quinasas Ciclina-Dependientes , Proteínas Fúngicas/genética , Mutación , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting , Ciclo Celular , Quinasa 2 Dependiente de la Ciclina , ADN de Hongos , Proteínas Fúngicas/aislamiento & purificación , Genes Fúngicos , Prueba de Complementación Genética , Humanos , Datos de Secuencia Molecular , Poli A/análisis , Proteínas Quinasas/aislamiento & purificación , ARN/análisis , ARN Mensajero , Saccharomyces cerevisiae/enzimología , Homología de Secuencia de Ácido Nucleico , Transcripción Genética , Xenopus , Proteínas de Xenopus
5.
Proc Natl Acad Sci U S A ; 88(5): 1731-5, 1991 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-1848010

RESUMEN

This work describes a multifunctional phage lambda expression vector system, lambda YES, designed to facilitate gene isolation from eukaryotes by complementation of Escherichia coli and Saccharomyces cerevisiae mutations. lambda YES vectors have a selection for cDNA inserts using an oligo adaptor strategy and are capable of expressing genes in both E. coli and S. cerevisiae. They also allow conversion from phage lambda to plasmid clones by using the cre-lox site-specific recombination system, referred to here as automatic subcloning. A simple method has been developed for the conversion of any plasmid into a phage lambda cDNA cloning vector with automatic subcloning capability. cDNA libraries constructed in these vectors were used to isolate genes from humans and Arabidopsis thaliana by complementation of yeast and bacterial mutations, respectively.


Asunto(s)
Bacteriófago lambda/genética , ADN Viral/genética , Escherichia coli/genética , Genes , Vectores Genéticos , Mutación , Saccharomyces cerevisiae/genética , Antígenos de Diferenciación de Linfocitos T/genética , Secuencia de Bases , Antígenos CD28 , Clonación Molecular/métodos , Biblioteca de Genes , Prueba de Complementación Genética , Humanos , Datos de Secuencia Molecular , Sondas de Oligonucleótidos , Plantas/genética , Plásmidos , Mapeo Restrictivo
6.
Nature ; 349(6308): 434-8, 1991 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-1825131

RESUMEN

A corollary of the central dogma of molecular biology is that genetic information passes from DNA to RNA by the continuous synthesis of RNA on a DNA template. The demonstration of RNA editing (the specific insertion, deletion or substitution of residues in RNA to create an RNA with a sequence different from its own template) raised the possibility that in some cases not all of the genetic information for a trait residues in the DNA template. Two different types of RNA editing have been identified in mitochondria: insertional editing represented by the extensive insertion (and occasional deletion) of uridine residues in mitochondrial RNAs of the kinetoplastid protozoa and the substitutional editing represented by the cytidine to uridine substitutions in some plant mitochondria. These editing types have not been shown to be present in the same organism and may have very different mechanisms. RNA editing of both types has been observed in nonmitochondrial systems but is not as extensive and may involve still different mechanisms. Here we report the discovery of extensive insertional RNA editing in mitochondria from an organism other than a kinetoplastid protozoan. The mitochondrial RNA apparently encoding the alpha subunit of ATP synthetase in the acellular slime mould, Physarum polycephalum, is edited at 54 sites by cytidine insertion.


Asunto(s)
Citidina/metabolismo , ADN Mitocondrial/genética , Physarum/genética , ATPasas de Translocación de Protón/genética , Procesamiento Postranscripcional del ARN , Secuencia de Aminoácidos , Secuencia de Bases , Codón , ADN/genética , Datos de Secuencia Molecular , ARN de Hongos/genética , Mapeo Restrictivo
7.
Curr Genet ; 17(4): 331-7, 1990 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-2340593

RESUMEN

Mitochondrial DNA (mtDNA) has been isolated from four strains of Physarum polycephalum and a restriction site map has been determined using nine restriction enzymes. The restriction site maps of the four strains are similar but each strain is distinguished by insertions, deletions and restriction enzyme site polymorphisms. The sum of the restriction fragments gives mitochondrial genome sizes which vary from about 56 kb to 62 kb. In all four strains the composite map of the restriction enzyme sites for the mtDNA is circular. Knowledge of the restriction enzyme map has enabled cloning of mtDNA fragments representing the entire mtDNA of strain M3. The cloned fragments have been used to create a transcription map of the mtDNA.


Asunto(s)
ADN Mitocondrial/genética , Physarum/genética , Transcripción Genética , Northern Blotting , Fraccionamiento Celular , Clonación Molecular , ADN de Hongos/genética , Mapeo Restrictivo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...