Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Evol Appl ; 11(8): 1354-1370, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30151045

RESUMEN

Genetic, physiological and physical homogenization of agricultural landscapes creates ideal environments for plant pathogens to proliferate and rapidly evolve. Thus, a critical challenge in plant pathology and epidemiology is to design durable and effective strategies to protect cropping systems from damage caused by pathogens. Theoretical studies suggest that spatio-temporal variation in the diversity and distribution of resistant hosts across agricultural landscapes may have strong effects on the epidemiology and evolutionary potential of crop pathogens. However, we lack empirical tests of spatio-temporal deployment of host resistance to pathogens can be best used to manage disease epidemics and disrupt pathogen evolutionary dynamics in real-world systems. In a field experiment, we simulated how differences in Brassica napus resistance deployment strategies and landscape connectivity influence epidemic severity and Leptosphaeria maculans pathogen population composition. Host plant resistance, spatio-temporal connectivity [stubble loads], and genetic connectivity of the inoculum source [composition of canola stubble mixtures] jointly impacted epidemiology (disease severity) and pathogen evolution (population composition). Changes in population composition were consistent with directional selection for the ability to infect the host (infectivity), leading to changes in pathotype (multilocus phenotypes) and infectivity frequencies. We repeatedly observed decreases in the frequency of unnecessary infectivity, suggesting that carrying multiple infectivity genes is costly for the pathogen. From an applied perspective, our results indicate that varying resistance genes in space and time can be used to help control disease, even when resistance has already been overcome. Furthermore, our approach extends our ability to test not only for the efficacy of host varieties in a given year, but also for durability over multiple cropping seasons, given variation in the combination of resistance genes deployed.

2.
New Phytol ; 180(1): 193-205, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18565145

RESUMEN

To investigate the role played by the distribution pattern of glucosinolates (GSLs) in root systems in the release of biocides to the rhizosphere, GSLs have been localized, for the first time, to specific regions and cells in field-grown roots. GSL concentrations in separated tissues of canola (Brassica napus) were determined by chemical analysis, and cell-specific concentrations by extrapolation from sulphur concentrations obtained by quantitative cryo-analytical scanning electron microscopy (SEM). In roots with secondary growth, GSL concentrations in the outer secondary tissues were up to 5x those of the inner core. The highest GSL concentrations (from sulphur measurements) were in two cell layers just under the outermost periderm layer, with up to 100x published concentrations for whole roots. Primary tissues had negligible GSL. Release and renewal of the peripheral GSLs is probably a normal developmental process as secondary thickening continues and surface cells senesce, accounting for published observations that intact roots release GSLs and their biocide hydrolosates to the rhizosphere. Absence of myrosin idioblasts close to the root surface suggests that GSLs released developmentally are hydrolysed by myrosinase in the rhizosphere, ensuring a continuous localized source of biotoxic hydrolysates which can deter soil-borne pests, and influence microbial populations associated with long-lived components of the root system.


Asunto(s)
Brassica napus/química , Glucosinolatos/análisis , Azufre/análisis , Brassica napus/citología , Brassica napus/metabolismo , Cromatografía Líquida de Alta Presión , Microscopía por Crioelectrón , Microanálisis por Sonda Electrónica , Glucosinolatos/metabolismo , Microscopía Electrónica de Rastreo , Raíces de Plantas/química , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Potasio/análisis , Potasio/metabolismo , Azufre/metabolismo
3.
New Phytol ; 176(1): 211-222, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17696980

RESUMEN

Infection of Brassica napus cotyledons and leaves by germinating ascospores of Leptosphaeria maculans leads to production of leaf lesions followed by stem cankers (blackleg). Leptosphaeria maculans also causes root rot but the pathway of infection has not been described. An L. maculans isolate expressing green fluorescent protein (GFP) was applied to the petiole of B. napus plants. Hyphal growth was followed by fluorescence microscopy and by culturing of sections of plant tissue on growth media. Leptosphaeria maculans grew within stem and hypocotyl tissue during the vegetative stages of plant growth, and proliferated into the roots within xylem vessels at the onset of flowering. Hyphae grew in all tissues in the stem and hypocotyl, but were restricted mainly to xylem tissue in the root. Leptosphaeria maculans also infected intact roots when inoculum was applied directly to them and hyphae entered at sites of lateral root emergence. Hyphal entry may occur at other sites but the mechanism is uncertain as penetration structures were not observed. Infection of B. napus roots by L. maculans can occur via above- and below-ground sources of inoculum, but the relative importance of the infection pathways under field conditions is unknown.


Asunto(s)
Ascomicetos/fisiología , Brassica napus/microbiología , Ascomicetos/genética , Ascomicetos/crecimiento & desarrollo , Brassica napus/anatomía & histología , Cotiledón/microbiología , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Hifa/crecimiento & desarrollo , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Esporas Fúngicas/fisiología , Xilema/microbiología
4.
Plant Cell ; 19(7): 2225-45, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17616737

RESUMEN

The Arabidopsis thaliana basic helix-loop-helix Leu zipper transcription factor (TF) MYC2/JIN1 differentially regulates jasmonate (JA)-responsive pathogen defense (e.g., PDF1.2) and wound response (e.g., VSP) genes. In this study, genome-wide transcriptional profiling of wild type and mutant myc2/jin1 plants followed by functional analyses has revealed new roles for MYC2 in the modulation of diverse JA functions. We found that MYC2 negatively regulates Trp and Trp-derived secondary metabolism such as indole glucosinolate biosynthesis during JA signaling. Furthermore, MYC2 positively regulates JA-mediated resistance to insect pests, such as Helicoverpa armigera, and tolerance to oxidative stress, possibly via enhanced ascorbate redox cycling and flavonoid biosynthesis. Analyses of MYC2 cis binding elements and expression of MYC2-regulated genes in T-DNA insertion lines of a subset of MYC2-regulated TFs suggested that MYC2 might modulate JA responses via differential regulation of an intermediate spectrum of TFs with activating or repressing roles in JA signaling. MYC2 also negatively regulates its own expression, and this may be one of the mechanisms used in fine-tuning JA signaling. Overall, these results provide new insights into the function of MYC2 and the transcriptional coordination of the JA signaling pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Transporte Biológico/efectos de los fármacos , Ciclopentanos/farmacología , Defensinas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Flavonoides/biosíntesis , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Glucosinolatos/biosíntesis , Inmunidad Innata/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Insectos , Datos de Secuencia Molecular , Estrés Oxidativo/efectos de los fármacos , Oxilipinas/farmacología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Unión Proteica/efectos de los fármacos , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Triptófano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA