Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11188, 2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755251

RESUMEN

In primates, foveal and peripheral vision have distinct neural architectures and functions. However, it has been debated if selective attention operates via the same or different neural mechanisms across eccentricities. We tested these alternative accounts by examining the effects of selective attention on the steady-state visually evoked potential (SSVEP) and the fronto-parietal signal measured via EEG from human subjects performing a sustained visuospatial attention task. With a negligible level of eye movements, both SSVEP and SND exhibited the heterogeneous patterns of attentional modulations across eccentricities. Specifically, the attentional modulations of these signals peaked at the parafoveal locations and such modulations wore off as visual stimuli appeared closer to the fovea or further away towards the periphery. However, with a relatively higher level of eye movements, the heterogeneous patterns of attentional modulations of these neural signals were less robust. These data demonstrate that the top-down influence of covert visuospatial attention on early sensory processing in human cortex depends on eccentricity and the level of saccadic responses. Taken together, the results suggest that sustained visuospatial attention operates differently across different eccentric locations, providing new understanding of how attention augments sensory representations regardless of where the attended stimulus appears.


Asunto(s)
Atención , Electroencefalografía , Potenciales Evocados Visuales , Humanos , Atención/fisiología , Masculino , Femenino , Potenciales Evocados Visuales/fisiología , Adulto , Adulto Joven , Estimulación Luminosa , Percepción Visual/fisiología , Movimientos Oculares/fisiología
2.
bioRxiv ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38766258

RESUMEN

To mitigate capacity limits of working memory, people allocate resources according to an item's relevance. However, the neural mechanisms supporting such a critical operation remain unknown. Here, we developed computational neuroimaging methods to decode and demix neural responses associated with multiple items in working memory with different priorities. In striate and extrastriate cortex, the gain of neural responses tracked the priority of memoranda. Higher-priority memoranda were decoded with smaller error and lower uncertainty. Moreover, these neural differences predicted behavioral differences in memory prioritization. Remarkably, trialwise variability in the magnitude of delay activity in frontal cortex predicted differences in decoded precision between low and high-priority items in visual cortex. These results suggest a model in which feedback signals broadcast from frontal cortex sculpt the gain of memory representations in visual cortex according to behavioral relevance, thus, identifying a neural mechanism for resource allocation.

3.
Res Sq ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37986807

RESUMEN

In primates, foveal and peripheral vision have distinct neural architectures and functions. However, it has been debated if selective attention operates via the same or different neural mechanisms across eccentricities. We tested these alternative accounts by examining the effects of selective attention on the steady-state visually evoked potential (SSVEP) and the fronto-parietal signal measured via EEG from human subjects performing a sustained visuospatial attention task. With a negligible level of eye movements, both SSVEP and SND exhibited the heterogeneous patterns of attentional modulations across eccentricities. Specifically, the attentional modulations of these signals peaked at the parafoveal locations and such modulations wore off as visual stimuli appeared closer to the fovea or further away towards the periphery. However, with a relatively higher level of eye movements, the heterogeneous patterns of attentional modulations of these neural signals were less robust. These data demonstrate that the top-down influence of covert visuospatial attention on early sensory processing in human cortex depends on eccentricity and the level of saccadic responses. Taken together, the results suggest that sustained visuospatial attention operates differently across different eccentric locations, providing new understanding of how attention augments sensory representations regardless of where the attended stimulus appears.

4.
J Neurosci ; 43(50): 8785-8800, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37907257

RESUMEN

Priority map theory is a leading framework for understanding how various aspects of stimulus displays and task demands guide visual attention. Per this theory, the visual system computes a priority map, which is a representation of visual space indexing the relative importance, or priority, of locations in the environment. Priority is computed based on both salience, defined based on image-computable properties; and relevance, defined by an individual's current goals, and is used to direct attention to the highest-priority locations for further processing. Computational theories suggest that priority maps identify salient locations based on individual feature dimensions (e.g., color, motion), which are integrated into an aggregate priority map. While widely accepted, a core assumption of this framework, the existence of independent feature dimension maps in visual cortex, remains untested. Here, we tested the hypothesis that retinotopic regions selective for specific feature dimensions (color or motion) in human cortex act as neural feature dimension maps, indexing salient locations based on their preferred feature. We used fMRI activation patterns to reconstruct spatial maps while male and female human participants viewed stimuli with salient regions defined by relative color or motion direction. Activation in reconstructed spatial maps was localized to the salient stimulus position in the display. Moreover, the strength of the stimulus representation was strongest in the ROI selective for the salience-defining feature. Together, these results suggest that feature-selective extrastriate visual regions highlight salient locations based on local feature contrast within their preferred feature dimensions, supporting their role as neural feature dimension maps.SIGNIFICANCE STATEMENT Identifying salient information is important for navigating the world. For example, it is critical to detect a quickly approaching car when crossing the street. Leading models of computer vision and visual search rely on compartmentalized salience computations based on individual features; however, there has been no direct empirical demonstration identifying neural regions as responsible for performing these dissociable operations. Here, we provide evidence of a critical double dissociation that neural activation patterns from color-selective regions prioritize the location of color-defined salience while minimally representing motion-defined salience, whereas motion-selective regions show the complementary result. These findings reveal that specialized cortical regions act as neural "feature dimension maps" that are used to index salient locations based on specific features to guide attention.


Asunto(s)
Mapeo Encefálico , Corteza Visual , Humanos , Masculino , Femenino , Visión Ocular , Corteza Visual/fisiología , Estimulación Luminosa/métodos , Percepción Visual/fisiología
5.
Atten Percept Psychophys ; 85(5): 1710-1721, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36720782

RESUMEN

Working memory (WM) is the ability to maintain and manipulate information no longer accessible in the environment. The brain maintains WM representations over delay periods in noisy population-level activation patterns, resulting in variability in WM representations across items and trials. It is established that participants can introspect aspects of the quality of WM representations, and that they can accurately compare which of several WM representations of stimulus features like orientation or color is better on each trial. However, whether this ability to evaluate and compare the quality of multiple WM representations extends to spatial WM tasks remains unknown. Here, we employed a memory-guided saccade task to test recall errors for remembered spatial locations when participants were allowed to choose the most precise representation to report. Participants remembered either one or two spatial locations over a delay and reported one item's location with a saccade. On trials with two spatial locations, participants reported either the spatial location of a randomly cued item, or the location of the stimulus they remembered best. We found a significant improvement in recall error and increase in response time (RT) when participants reported their best-remembered item compared with trials in which they were randomly cued. These results demonstrate that participants can accurately introspect the relative quality of neural WM representations for spatial position, consistent with previous observations for other stimulus features, and support a model of WM coding involving noisy representations across items and trials.


Asunto(s)
Señales (Psicología) , Memoria a Corto Plazo , Humanos , Memoria a Corto Plazo/fisiología , Encéfalo/fisiología , Recuerdo Mental/fisiología , Tiempo de Reacción , Memoria Espacial/fisiología
6.
Atten Percept Psychophys ; 85(3): 769-784, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36417129

RESUMEN

Contemporary theories of attentional control state that information can be prioritized based on selection history. Even though theories agree that selection history can impact representations of spatial location, which in turn helps guide attention, there remains disagreement on whether nonspatial features (e.g., color) are modulated in a similar way. While previous work has demonstrated color suppression using visual search tasks, it is possible that the location corresponding to the distractor was suppressed, consistent with a spatial mechanism of suppression. Here, we sought to rule out this possibility by testing whether similar suppression of a learned distractor color can occur for spatially overlapping visual stimuli. On a given trial, two spatially superimposed stimuli (line arrays) were tilted either left or right of vertical and presented in one of four distinct colors. Subjects performed a speeded report of the orientation of the "target" array with the most lines. Critically, the distractor array was regularly one color, and this high-probability color was never the color of the target array, which encouraged learned suppression. In two experiments, responses to the target array were fastest when the distractor array was in the high-probability color, suggesting participants suppressed the distractor color. Additionally, when regularities were removed, the high-probability distractor color continued to benefit speeded target identification for individual subjects (E1) but slowed target identification (E2) when presented in the target array. Together, these results indicate that learned suppression of feature-based regularities modulates target detection performance independent of spatial location and persists over time.


Asunto(s)
Atención , Aprendizaje , Humanos , Atención/fisiología , Tiempo de Reacción/fisiología
7.
Cereb Cortex ; 32(5): 1077-1092, 2022 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-34428283

RESUMEN

Current theories propose that the short-term retention of information in working memory (WM) and the recall of information from long-term memory (LTM) are supported by overlapping neural mechanisms in occipital and parietal cortex. However, the extent of the shared representations between WM and LTM is unclear. We designed a spatial memory task that allowed us to directly compare the representations of remembered spatial information in WM and LTM with carefully matched behavioral response precision between tasks. Using multivariate pattern analyses on functional magnetic resonance imaging data, we show that visual memories were represented in a sensory-like code in both memory tasks across retinotopic regions in occipital and parietal cortex. Regions in lateral parietal cortex also encoded remembered locations in both tasks, but in a format that differed from sensory-evoked activity. These results suggest a striking correspondence in the format of representations maintained in WM and retrieved from LTM across occipital and parietal cortex. On the other hand, we also show that activity patterns in nearly all parietal regions, but not occipital regions, contained information that could discriminate between WM and LTM trials. Our data provide new evidence for theories of memory systems and the representation of mnemonic content.


Asunto(s)
Memoria a Largo Plazo , Memoria a Corto Plazo , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética , Memoria a Corto Plazo/fisiología , Lóbulo Occipital , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología
8.
J Cogn Neurosci ; 34(2): 365-379, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34942647

RESUMEN

Humans allocate visual working memory (WM) resource according to behavioral relevance, resulting in more precise memories for more important items. Theoretically, items may be maintained by feature-tuned neural populations, where the relative gain of the populations encoding each item determines precision. To test this hypothesis, we compared the amplitudes of delay period activity in the different parts of retinotopic maps representing each of several WM items, predicting the amplitudes would track behavioral priority. Using fMRI, we scanned participants while they remembered the location of multiple items over a WM delay and then reported the location of one probed item using a memory-guided saccade. Importantly, items were not equally probable to be probed (0.6, 0.3, 0.1, 0.0), which was indicated with a precue. We analyzed fMRI activity in 10 visual field maps in occipital, parietal, and frontal cortex known to be important for visual WM. In early visual cortex, but not association cortex, the amplitude of BOLD activation within voxels corresponding to the retinotopic location of visual WM items increased with the priority of the item. Interestingly, these results were contrasted with a common finding that higher-level brain regions had greater delay period activity, demonstrating a dissociation between the absolute amount of activity in a brain area and the activity of different spatially selective populations within it. These results suggest that the distribution of WM resources according to priority sculpts the relative gains of neural populations that encode items, offering a neural mechanism for how prioritization impacts memory precision.


Asunto(s)
Memoria a Corto Plazo , Percepción Visual , Lóbulo Frontal , Humanos , Imagen por Resonancia Magnética , Recuerdo Mental , Movimientos Sacádicos
9.
Neuron ; 109(22): 3699-3712.e6, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34525327

RESUMEN

Neural representations of visual working memory (VWM) are noisy, and thus, decisions based on VWM are inevitably subject to uncertainty. However, the mechanisms by which the brain simultaneously represents the content and uncertainty of memory remain largely unknown. Here, inspired by the theory of probabilistic population codes, we test the hypothesis that the human brain represents an item maintained in VWM as a probability distribution over stimulus feature space, thereby capturing both its content and uncertainty. We used a neural generative model to decode probability distributions over memorized locations from fMRI activation patterns. We found that the mean of the probability distribution decoded from retinotopic cortical areas predicted memory reports on a trial-by-trial basis. Moreover, in several of the same mid-dorsal stream areas, the spread of the distribution predicted subjective trial-by-trial uncertainty judgments. These results provide evidence that VWM content and uncertainty are jointly represented by probabilistic neural codes.


Asunto(s)
Imagen por Resonancia Magnética , Memoria a Corto Plazo , Encéfalo , Humanos , Imagen por Resonancia Magnética/métodos , Memoria a Corto Plazo/fisiología , Incertidumbre , Percepción Visual/fisiología
10.
Nat Commun ; 12(1): 4714, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354071

RESUMEN

Although the contents of working memory can be decoded from visual cortex activity, these representations may play a limited role if they are not robust to distraction. We used model-based fMRI to estimate the impact of distracting visual tasks on working memory representations in several visual field maps in visual and frontoparietal association cortex. Here, we show distraction causes the fidelity of working memory representations to briefly dip when both the memorandum and distractor are jointly encoded by the population activities. Distraction induces small biases in memory errors which can be predicted by biases in neural decoding in early visual cortex, but not other regions. Although distraction briefly disrupts working memory representations, the widespread redundancy with which working memory information is encoded may protect against catastrophic loss. In early visual cortex, the neural representation of information in working memory and behavioral performance are intertwined, solidifying its importance in visual memory.


Asunto(s)
Memoria a Corto Plazo/fisiología , Corteza Visual/fisiología , Adulto , Atención/fisiología , Mapeo Encefálico , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Modelos Psicológicos , Estimulación Luminosa , Análisis y Desempeño de Tareas
11.
Front Neural Circuits ; 15: 696060, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366794

RESUMEN

Working memory (WM) extends the duration over which information is available for processing. Given its importance in supporting a wide-array of high level cognitive abilities, uncovering the neural mechanisms that underlie WM has been a primary goal of neuroscience research over the past century. Here, we critically review what we consider the two major "arcs" of inquiry, with a specific focus on findings that were theoretically transformative. For the first arc, we briefly review classic studies that led to the canonical WM theory that cast the prefrontal cortex (PFC) as a central player utilizing persistent activity of neurons as a mechanism for memory storage. We then consider recent challenges to the theory regarding the role of persistent neural activity. The second arc, which evolved over the last decade, stemmed from sophisticated computational neuroimaging approaches enabling researchers to decode the contents of WM from the patterns of neural activity in many parts of the brain including early visual cortex. We summarize key findings from these studies, their implications for WM theory, and finally the challenges these findings pose. Our goal in doing so is to identify barriers to developing a comprehensive theory of WM that will require a unification of these two "arcs" of research.


Asunto(s)
Potenciales de Acción/fisiología , Memoria a Corto Plazo/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Corteza Prefrontal/fisiología , Animales , Humanos
12.
PLoS Negl Trop Dis ; 15(6): e0009424, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34138849

RESUMEN

Most alphaviruses are mosquito-borne and can cause severe disease in humans and domesticated animals. In North America, eastern equine encephalitis virus (EEEV) is an important human pathogen with case fatality rates of 30-90%. Currently, there are no therapeutics or vaccines to treat and/or prevent human infection. One critical impediment in countermeasure development is the lack of insight into clinically relevant parameters in a susceptible animal model. This study examined the disease course of EEEV in a cynomolgus macaque model utilizing advanced telemetry technology to continuously and simultaneously measure temperature, respiration, activity, heart rate, blood pressure, electrocardiogram (ECG), and electroencephalography (EEG) following an aerosol challenge at 7.0 log10 PFU. Following challenge, all parameters were rapidly and substantially altered with peak alterations from baseline ranged as follows: temperature (+3.0-4.2°C), respiration rate (+56-128%), activity (-15-76% daytime and +5-22% nighttime), heart rate (+67-190%), systolic (+44-67%) and diastolic blood pressure (+45-80%). Cardiac abnormalities comprised of alterations in QRS and PR duration, QTc Bazett, T wave morphology, amplitude of the QRS complex, and sinoatrial arrest. An unexpected finding of the study was the first documented evidence of a critical cardiac event as an immediate cause of euthanasia in one NHP. All brain waves were rapidly (~12-24 hpi) and profoundly altered with increases of up to 6,800% and severe diffuse slowing of all waves with decreases of ~99%. Lastly, all NHPs exhibited disruption of the circadian rhythm, sleep, and food/fluid intake. Accordingly, all NHPs met the euthanasia criteria by ~106-140 hpi. This is the first of its kind study utilizing state of the art telemetry to investigate multiple clinical parameters relevant to human EEEV infection in a susceptible cynomolgus macaque model. The study provides critical insights into EEEV pathogenesis and the parameters identified will improve animal model development to facilitate rapid evaluation of vaccines and therapeutics.


Asunto(s)
Infecciones por Alphavirus/virología , Modelos Animales de Enfermedad , Electroencefalografía , Virus de la Encefalitis Equina del Este , Monitoreo Fisiológico/instrumentación , Telemetría/instrumentación , Aerosoles , Infecciones por Alphavirus/patología , Animales , Presión Sanguínea , Temperatura Corporal , Chlorocebus aethiops , Femenino , Frecuencia Cardíaca , Humanos , Macaca fascicularis , Masculino , Monitoreo Fisiológico/métodos , Actividad Motora , Fenómenos Fisiológicos Respiratorios , Telemetría/métodos , Células Vero
13.
Microorganisms ; 9(3)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806942

RESUMEN

Ebola virus is a continuing threat to human populations, causing a virulent hemorrhagic fever disease characterized by dysregulation of both the innate and adaptive host immune responses. Severe cases are distinguished by an early, elevated pro-inflammatory response followed by a pronounced lymphopenia with B and T cells unable to mount an effective anti-viral response. The precise mechanisms underlying the dysregulation of the host immune system are poorly understood. In recent years, focus on host-derived miRNAs showed these molecules to play an important role in the host gene regulation arsenal. Here, we describe an investigation of RNA biomarkers in the fatal Ebola virus disease (EVD) cynomolgus macaque model. We monitored both host mRNA and miRNA responses in whole blood longitudinally over the disease course in these non-human primates (NHPs). Analysis of the interactions between these classes of RNAs revealed several miRNA markers significantly correlated with downregulation of genes; specifically, the analysis revealed those involved in dysregulated immune pathways associated with EVD. In particular, we noted strong interactions between the miRNAs hsa-miR-122-5p and hsa-miR-125b-5p with immunological genes regulating both B and T-cell activation. This promising set of biomarkers will be useful in future studies of severe EVD pathogenesis in both NHPs and humans and may serve as potential prognostic targets.

14.
Am J Trop Med Hyg ; 104(3): 1093-1095, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33534737

RESUMEN

Following vaccination with the live attenuated, recombinant vesicular stomatitis virus Indiana serotype Ebola virus (rVSV-EBOV) vaccine, persons may exhibit a transient vaccine-associated viremia. To investigate the potential for Old World sand flies to transmit this vaccine following feeding on a viremic person, we fed laboratory-reared Phlebotomus papatasi an artificial blood meal containing 7.2 log10 plaque-forming units of rVSV-EBOV. Replication or dissemination was not detected in the body or legs of any P. papatasi collected at seven (n = 75) or 15 (n = 75) days post-feed. These results indicate a low potential for rVSV-EBOV to replicate and disseminate in P. papatasi, a species whose geographic distribution ranges from Morocco to southwest Asia and as far north as southern Europe.


Asunto(s)
Anticuerpos Antivirales/sangre , Transmisión de Enfermedad Infecciosa , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/efectos de los fármacos , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/transmisión , Phlebotomus/virología , Animales , Humanos
15.
J Neurosci ; 40(4): 917-931, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31862856

RESUMEN

Categorization allows organisms to generalize existing knowledge to novel stimuli and to discriminate between physically similar yet conceptually different stimuli. Humans, nonhuman primates, and rodents can readily learn arbitrary categories defined by low-level visual features, and learning distorts perceptual sensitivity for category-defining features such that differences between physically similar yet categorically distinct exemplars are enhanced, whereas differences between equally similar but categorically identical stimuli are reduced. We report a possible basis for these distortions in human occipitoparietal cortex. In three experiments, we used an inverted encoding model to recover population-level representations of stimuli from multivoxel and multielectrode patterns of human brain activity while human participants (both sexes) classified continuous stimulus sets into discrete groups. In each experiment, reconstructed representations of to-be-categorized stimuli were systematically biased toward the center of the appropriate category. These biases were largest for exemplars near a category boundary, predicted participants' overt category judgments, emerged shortly after stimulus onset, and could not be explained by mechanisms of response selection or motor preparation. Collectively, our findings suggest that category learning can influence processing at the earliest stages of cortical visual processing.SIGNIFICANCE STATEMENT Category learning enhances perceptual sensitivity for physically similar yet categorically different stimuli. We report a possible mechanism for these changes in human occipitoparietal cortex. In three experiments, we used an inverted encoding model to recover population-level representations of stimuli from multivariate patterns in occipitoparietal cortex while participants categorized sets of continuous stimuli into discrete groups. The recovered representations were systematically biased by category membership, with larger biases for exemplars adjacent to a category boundary. These results suggest that mechanisms of categorization shape information processing at the earliest stages of the visual system.


Asunto(s)
Cognición/fisiología , Juicio/fisiología , Lóbulo Occipital/fisiología , Lóbulo Parietal/fisiología , Reconocimiento Visual de Modelos/fisiología , Adulto , Mapeo Encefálico , Electroencefalografía , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Lóbulo Occipital/diagnóstico por imagen , Lóbulo Parietal/diagnóstico por imagen , Estimulación Luminosa
16.
eNeuro ; 6(6)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31772033

RESUMEN

Model-based analyses open exciting opportunities for understanding neural information processing. In a commentary published in eNeuro, Gardner and Liu (2019) discuss the role of model specification in interpreting results derived from complex models of neural data. As a case study, they suggest that one such analysis, the inverted encoding model (IEM), should not be used to assay properties of "stimulus representations" because the ability to apply linear transformations at various stages of the analysis procedure renders results "arbitrary." Here, we argue that the specification of all models is arbitrary to the extent that an experimenter makes choices based on current knowledge of the model system. However, the results derived from any given model, such as the reconstructed channel response profiles obtained from an IEM analysis, are uniquely defined and are arbitrary only in the sense that changes in the model can predictably change results. IEM-based channel response profiles should therefore not be considered arbitrary when the model is clearly specified and guided by our best understanding of neural population representations in the brain regions being analyzed. Intuitions derived from this case study are important to consider when interpreting results from all model-based analyses, which are similarly contingent upon the specification of the models used.


Asunto(s)
Encéfalo , Neuroimagen
17.
PLoS Biol ; 17(8): e3000186, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398186

RESUMEN

When a behaviorally relevant stimulus has been previously associated with reward, behavioral responses are faster and more accurate compared to equally relevant but less valuable stimuli. Conversely, task-irrelevant stimuli that were previously associated with a high reward can capture attention and distract processing away from relevant stimuli (e.g., seeing a chocolate bar in the pantry when you are looking for a nice, healthy apple). Although increasing the value of task-relevant stimuli systematically up-regulates neural responses in early visual cortex to facilitate information processing, it is not clear whether the value of task-irrelevant distractors influences behavior via competition in early visual cortex or via competition at later stages of decision-making and response selection. Here, we measured functional magnetic resonance imaging (fMRI) in human visual cortex while subjects performed a value-based learning task, and we applied a multivariate inverted encoding model (IEM) to assess the fidelity of distractor representations in early visual cortex. We found that the fidelity of neural representations related to task-irrelevant distractors increased when the distractors were previously associated with a high reward. This finding suggests that value-driven attentional capture begins with sensory modulations of distractor representations in early areas of visual cortex.


Asunto(s)
Atención/fisiología , Tiempo de Reacción/fisiología , Corteza Visual/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Aprendizaje/fisiología , Imagen por Resonancia Magnética , Masculino , Estimulación Luminosa , Recompensa , Percepción Visual/fisiología
18.
eNeuro ; 6(4)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31285275

RESUMEN

Navigating through natural environments requires localizing objects along three distinct spatial axes. Information about position along the horizontal and vertical axes is available from an object's position on the retina, while position along the depth axis must be inferred based on second-order cues such as the disparity between the images cast on the two retinae. Past work has revealed that object position in two-dimensional (2D) retinotopic space is robustly represented in visual cortex and can be robustly predicted using a multivariate encoding model, in which an explicit axis is modeled for each spatial dimension. However, no study to date has used an encoding model to estimate a representation of stimulus position in depth. Here, we recorded BOLD fMRI while human subjects viewed a stereoscopic random-dot sphere at various positions along the depth (z) and the horizontal (x) axes, and the stimuli were presented across a wider range of disparities (out to ∼40 arcmin) compared to previous neuroimaging studies. In addition to performing decoding analyses for comparison to previous work, we built encoding models for depth position and for horizontal position, allowing us to directly compare encoding between these dimensions. Our results validate this method of recovering depth representations from retinotopic cortex. Furthermore, we find convergent evidence that depth is encoded most strongly in dorsal area V3A.


Asunto(s)
Percepción de Profundidad/fisiología , Lóbulo Parietal/fisiología , Corteza Visual/fisiología , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Modelos Neurológicos , Análisis Multivariante , Estimulación Luminosa/métodos , Máquina de Vectores de Soporte
19.
J Neurosci ; 39(31): 6162-6179, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31127004

RESUMEN

Functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) are two noninvasive methods commonly used to study neural mechanisms supporting visual attention in humans. Studies using these tools, which have complementary spatial and temporal resolutions, implicitly assume they index similar underlying neural modulations related to external stimulus and internal attentional manipulations. Accordingly, they are often used interchangeably for constraining understanding about the impact of bottom-up and top-down factors on neural modulations. To test this core assumption, we simultaneously manipulated bottom-up sensory inputs by varying stimulus contrast and top-down cognitive modulations by changing the focus of spatial attention. Each of the male and female subjects participated in both fMRI and EEG sessions performing the same experimental paradigm. We found categorically different patterns of attentional modulation on fMRI activity in early visual cortex and early stimulus-evoked potentials measured via EEG (e.g., the P1 component and steady-state visually-evoked potentials): fMRI activation scaled additively with attention, whereas evoked EEG components scaled multiplicatively with attention. However, across longer time scales, a contralateral negative-going potential and oscillatory EEG signals in the alpha band revealed additive attentional modulation patterns like those observed with fMRI. These results challenge prior assumptions that fMRI and early stimulus-evoked potentials measured with EEG can be interchangeably used to index the same neural mechanisms of attentional modulations at different spatiotemporal scales. Instead, fMRI measures of attentional modulations are more closely linked with later EEG components and alpha-band oscillations. Considered together, hemodynamic and electrophysiological signals can jointly constrain understanding of the neural mechanisms supporting cognition.SIGNIFICANCE STATEMENT fMRI and EEG have been used as tools to measure the location and timing of attentional modulations in visual cortex and are often used interchangeably for constraining computational models under the assumption that they index similar underlying neural processes. However, by varying attentional and stimulus parameters, we found differential patterns of attentional modulations of fMRI activity in early visual cortex and commonly used stimulus-evoked potentials measured via EEG. Instead, across longer time scales, a contralateral negative-going potential and EEG oscillations in the alpha band exhibited attentional modulations similar to those observed with fMRI. Together, these results suggest that different physiological processes assayed by these complementary techniques must be jointly considered when making inferences about the neural underpinnings of cognitive operations.


Asunto(s)
Atención/fisiología , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Imagen por Resonancia Magnética/métodos , Corteza Visual/fisiología , Adulto , Femenino , Humanos , Masculino
20.
Am J Trop Med Hyg ; 100(6): 1541-1544, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31017081

RESUMEN

Most alphaviruses are mosquito-borne and can cause severe disease in domesticated animals and humans. The most notable recent outbreak in the Americas was the 2014 chikungunya virus (CHIKV) outbreak affecting millions and producing disease highlighted by rash and arthralgia. Chikungunya virus is a member of the Semliki Forest (SF) serocomplex, and before its arrival in the Americas, two other member of the SF complex, Una (UNAV) and Mayaro (MAYV) viruses, were circulating in Central and South America. This study examined whether antibodies from convalescent CHIKV patients could cross-neutralize UNAV and MAYV. Considerable cross-neutralization of both viruses was observed, suggesting that exposure to CHIKV can produce antibodies that may mitigate infection with UNAV or MAYV. Understanding the impact of CHIKV exposure on population susceptibility to other emerging viruses may help predict outbreaks; moreover, identification of cross-reactive immune responses among alphaviruses may lead to the development of vaccines targeting multiple viruses.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Virus Chikungunya/inmunología , Fiebre Chikungunya/virología , Reacciones Cruzadas , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...