Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Mil Med Res ; 11(1): 27, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685116

RESUMEN

BACKGROUND: The channel-forming protein Pannexin1 (Panx1) has been implicated in both human studies and animal models of chronic pain, but the underlying mechanisms remain incompletely understood. METHODS: Wild-type (WT, n = 24), global Panx1 KO (n = 24), neuron-specific Panx1 KO (n = 20), and glia-specific Panx1 KO (n = 20) mice were used in this study at Albert Einstein College of Medicine. The von Frey test was used to quantify pain sensitivity in these mice following complete Freund's adjuvant (CFA) injection (7, 14, and 21 d). The qRT-PCR was employed to measure mRNA levels of Panx1, Panx2, Panx3, Cx43, Calhm1, and ß-catenin. Laser scanning confocal microscopy imaging, Sholl analysis, and electrophysiology were utilized to evaluate the impact of Panx1 on neuronal excitability and morphology in Neuro2a and dorsal root ganglion neurons (DRGNs) in which Panx1 expression or function was manipulated. Ethidium bromide (EtBr) dye uptake assay and calcium imaging were employed to investigate the role of Panx1 in adenosine triphosphate (ATP) sensitivity. ß-galactosidase (ß-gal) staining was applied to determine the relative cellular expression levels of Panx1 in trigeminal ganglia (TG) and DRG of transgenic mice. RESULTS: Global or neuron-specific Panx1 deletion markedly decreased pain thresholds after CFA stimuli (7, 14, and 21 d; P < 0.01 vs. WT group), indicating that Panx1 was positively correlated with pain sensitivity. In Neuro2a, global Panx1 deletion dramatically reduced neurite extension and inward currents compared to the WT group (P < 0.05), revealing that Panx1 enhanced neurogenesis and excitability. Similarly, global Panx1 deletion significantly suppressed Wnt/ß-catenin dependent DRG neurogenesis following 5 d of nerve growth factor (NGF) treatment (P < 0.01 vs. WT group). Moreover, Panx1 channels enhanced DRG neuron response to ATP after CFA injection (P < 0.01 vs. Panx1 KO group). Furthermore, ATP release increased Ca2+ responses in DRGNs and satellite glial cells surrounding them following 7 d of CFA treatment (P < 0.01 vs. Panx1 KO group), suggesting that Panx1 in glia also impacts exaggerated neuronal excitability. Interestingly, neuron-specific Panx1 deletion was found to markedly reduce differentiation in cultured DRGNs, as evidenced by stunted neurite outgrowth (P < 0.05 vs. Panx1 KO group; P < 0.01 vs. WT group or GFAP-Cre group), blunted activation of Wnt/ß-catenin signaling (P < 0.01 vs. WT, Panx1 KO and GFAP-Cre groups), and diminished cell excitability (P < 0.01 vs. GFAP-Cre group) and response to ATP stimulation (P < 0.01 vs. WT group). Analysis of ß-gal staining showed that cellular expression levels of Panx1 in neurons are significantly higher (2.5-fold increase) in the DRG than in the TG. CONCLUSIONS: The present study revealed that neuronal Panx1 is a prominent driver of peripheral sensitivity in the setting of inflammatory pain through cell-autonomous effects on neuronal excitability. This hyperexcitability dependence on neuronal Panx1 contrasts with inflammatory orofacial pain, where similar studies revealed a prominent role for glial Panx1. The apparent differences in Panx1 expression in neuronal and non-neuronal TG and DRG cells are likely responsible for the distinct impact of these cell types in the two pain models.


Asunto(s)
Conexinas , Proteínas del Tejido Nervioso , Animales , Conexinas/genética , Ratones , Proteínas del Tejido Nervioso/genética , Modelos Animales de Enfermedad , Dolor/fisiopatología , Dolor/etiología , Neuronas/metabolismo , Inflamación/fisiopatología , Ratones Noqueados , Masculino
2.
Glia ; 72(5): 938-959, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38362923

RESUMEN

In the adult brain, the water channel aquaporin-4 (AQP4) is expressed in astrocyte endfoot, in supramolecular assemblies, called "Orthogonal Arrays of Particles" (OAPs) together with the transient receptor potential vanilloid 4 (TRPV4), finely regulating the cell volume. The present study aimed at investigating the contribution of AQP4 and TRPV4 to CNS early postnatal development using WT and AQP4 KO brain and retina and neuronal stem cells (NSCs), as an in vitro model of astrocyte differentiation. Western blot analysis showed that, differently from AQP4 and the glial cell markers, TRPV4 was downregulated during CNS development and NSC differentiation. Blue native/SDS-PAGE revealed that AQP4 progressively organized into OAPs throughout the entire differentiation process. Fluorescence quenching assay indicated that the speed of cell volume changes was time-related to NSC differentiation and functional to their migratory ability. Calcium imaging showed that the amplitude of TRPV4 Ca2+ transient is lower, and the dynamics are changed during differentiation and suppressed in AQP4 KO NSCs. Overall, these findings suggest that early postnatal neurodevelopment is subjected to temporally modulated water and Ca2+ dynamics likely to be those sustaining the biochemical and physiological mechanisms responsible for astrocyte differentiation during brain and retinal development.


Asunto(s)
Astrocitos , Canales Catiónicos TRPV , Astrocitos/metabolismo , Canales Catiónicos TRPV/metabolismo , Acuaporina 4/metabolismo , Neuroglía/metabolismo , Encéfalo/metabolismo
3.
PLoS One ; 18(12): e0295710, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38100403

RESUMEN

Pannexins are ubiquitously expressed in human and mouse tissues. Pannexin 1 (Panx1), the most thoroughly characterized member of this family, forms plasmalemmal membrane channels permeable to relatively large molecules, such as ATP. Although human and mouse Panx1 amino acid sequences are conserved in the presently known regulatory sites involved in trafficking and modulation of the channel, differences are reported in the N- and C-termini of the protein, and the mechanisms of channel activation by different stimuli remain controversial. Here we used a neuroblastoma cell line to study the activation properties of endogenous mPanx1 and exogenously expressed hPanx1. Dye uptake and electrophysiological recordings revealed that in contrast to mouse Panx1, the human ortholog is insensitive to stimulation with high extracellular [K+] but responds similarly to activation of the purinergic P2X7 receptor. The two most frequent Panx1 polymorphisms found in the human population, Q5H (rs1138800) and E390D (rs74549886), exogenously expressed in Panx1-null N2a cells revealed that regarding P2X7 receptor mediated Panx1 activation, the Q5H mutant is a gain of function whereas the E390D mutant is a loss of function variant. Collectively, we demonstrate differences in the activation between human and mouse Panx1 orthologs and suggest that these differences may have translational implications for studies where Panx1 has been shown to have significant impact.


Asunto(s)
Conexinas , Células-Madre Neurales , Humanos , Adenosina Trifosfato/metabolismo , Línea Celular , Membrana Celular/metabolismo , Conexinas/genética , Conexinas/metabolismo , Células-Madre Neurales/metabolismo
4.
bioRxiv ; 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37986983

RESUMEN

Astrocyte endfeet enwrap brain vasculature, forming a boundary for perivascular glymphatic flow of fluid and solutes along and across the astrocyte endfeet into the brain parenchyma. To determine whether astrocytes may sense and respond to the shear forces generated by glymphatic flow, we examined intracellular calcium (Ca 2+ ) changes evoked in astrocytes to brief fluid flow applied in calibrated microfluidic chambers. Shear stresses < 20 dyn/cm 2 failed to evoke Ca 2+ responses in the absence of albumin, but cells responded to shear stress below 1 dyn/cm 2 when as little as 5 µM albumin was present in flow medium. A role for extracellular matrix in mechanotransduction was indicated by reduced sensitivity after degradation of heparan sulfate proteoglycan. Sphingosine-1-phosphate (S1P) amplified shear responses in the absence of albumin, whereas mechanosensitivity was attenuated by the S1P receptor blocker fingolimod. Piezo1 participated in the transduction as revealed by blockade by the spider toxin GsMTX and amplification by the chemical modulator Yoda1, even in absence of albumin or S1P. Our findings that astrocytes are exquisitely sensitive to shear stress and that sensitivity is greatly amplified by albumin concentrations encountered in normal and pathological CSF predict that perivascular astrocytes are responsive to glymphatic shear stress and that responsiveness is augmented by elevated CSF protein. S1P receptor signaling thus establishes a setpoint for Piezo1 activation that is finely tuned to coincide with albumin level in CSF and to the low shear forces resulting from glymphatic flow. Graphical abstract: Astrocyte endfoot responds to glymphatic shear stress when albumin is present. Mechanism involves sphingosine-1-phosphate (S1P) binding to its receptor (S1PR), activating phospholipase C (PLC) and thereby sensitizing the response of Piezo1 to flow. Ca 2+ influx triggers Ca 2+ release from intracellular stores and further downstream signaling, thereby modulating parenchymal perfusion. Illustration created using BioRender.com.

5.
Pharmacol Ther ; 245: 108403, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37024060

RESUMEN

Interoception is the process by which the nervous system regulates internal functions to achieve homeostasis. The role of neurons in interoception has received considerable recent attention, but glial cells also contribute. Glial cells can sense and transduce signals including osmotic, chemical, and mechanical status of extracellular milieu. Their ability to dynamically communicate "listening" and "talking" to neurons is necessary to monitor and regulate homeostasis and information integration in the nervous system. This review introduces the concept of "Glioception" and focuses on the process by which glial cells sense, interpret and integrate information about the inner state of the organism. Glial cells are ideally positioned to act as sensors and integrators of diverse interoceptive signals and can trigger regulatory responses via modulation of the activity of neuronal networks, both in physiological and pathological conditions. We believe that understanding and manipulating glioceptive processes and underlying molecular mechanisms provide a key path to develop new therapies for the prevention and alleviation of devastating interoceptive dysfunctions, among which pain is emphasized here with more focused details.


Asunto(s)
Interocepción , Humanos , Interocepción/fisiología , Neuroglía , Neuronas/fisiología , Dolor
6.
J Vis Exp ; (192)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36912542

RESUMEN

Bone tissue is exquisitely sensitive to differences in mechanical load magnitude. Osteocytes, dendritic cells that form a syncytium throughout the bone, are responsible for the mechanosensory function of bone tissue. Studies employing histology, mathematical modeling, cell culture, and ex vivo bone organ cultures have greatly advanced the understanding of osteocyte mechanobiology. However, the fundamental question of how osteocytes respond to and encode mechanical information at the molecular level in vivo is not well understood. Intracellular calcium concentration fluctuations in osteocytes offer a useful target for learning more about acute bone mechanotransduction mechanisms. Here, we report a method for studying osteocyte mechanobiology in vivo, combining a mouse strain with a fluorescently genetically encoded calcium indicator expressed in osteocytes with an in vivo loading and imaging system to directly detect osteocyte calcium levels during loading. This is achieved with a three-point bending device that can deliver well-defined mechanical loads to the third metatarsal of living mice while simultaneously monitoring fluorescently indicated calcium responses of osteocytes using two-photon microscopy. This technique allows for direct in vivo observation of osteocyte calcium signaling events in response to whole bone loading and is useful in the endeavor to reveal mechanisms in osteocyte mechanobiology.


Asunto(s)
Mecanotransducción Celular , Osteocitos , Animales , Ratones , Mecanotransducción Celular/fisiología , Calcio/metabolismo , Señalización del Calcio/fisiología , Colorantes , Microscopía Intravital , Estrés Mecánico
7.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36769006

RESUMEN

The effects of aging on the nervous system are well documented. However, most previous studies on this topic were performed on the central nervous system. The present study was carried out on the dorsal root ganglia (DRGs) of mice, and focused on age-related changes in DRG neurons and satellite glial cells (SGCs). Intracellular electrodes were used for dye injection to examine the gap junction-mediated coupling between neurons and SGCs, and for intracellular electrical recordings from the neurons. Tactile sensitivity was assessed with von Frey hairs. We found that 3-23% of DRG neurons were dye-coupled to SGCs surrounding neighboring neurons in 8-24-month (Mo)-old mice, whereas in young adult (3 Mo) mice, the figure was 0%. The threshold current for firing an action potential in sensory neurons was significantly lower in DRGs from 12 Mo mice compared with those from 3 Mo mice. The percentage of neurons with spontaneous subthreshold membrane potential oscillation was greater by two-fold in 12 Mo mice. The withdrawal threshold was lower by 22% in 12 Mo mice compared with 3 Mo ones. These results show that in the aged mice, a proportion of DRG neurons is coupled to SGCs, and that the membrane excitability of the DRG neurons increases with age. We propose that augmented neuron-SGC communications via gap junctions are caused by low-grade inflammation associated with aging, and this may contribute to pain behavior.


Asunto(s)
Ganglios Espinales , Neuroglía , Ratones , Animales , Potenciales de la Membrana , Células Receptoras Sensoriales , Ratones Endogámicos BALB C
8.
Cells ; 11(20)2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36291086

RESUMEN

Pannexin1 (Panx1) is expressed in both neurons and glia where it forms ATP-permeable channels that are activated under pathological conditions such as epilepsy, migraine, inflammation, and ischemia. Membrane lipid composition affects proper distribution and function of receptors and ion channels, and defects in cholesterol metabolism are associated with neurological diseases. In order to understand the impact of membrane cholesterol on the distribution and function of Panx1 in neural cells, we used fluorescence recovery after photobleaching (FRAP) to evaluate its mobility and electrophysiology and dye uptake to assess channel function. We observed that cholesterol extraction (using methyl-ß-cyclodextrin) and inhibition of its synthesis (lovastatin) decreased the lateral diffusion of Panx1 in the plasma membrane. Panx1 channel activity (dye uptake, ATP release and ionic current) was enhanced in cholesterol-depleted Panx1 transfected cells and in wild-type astrocytes compared to non-depleted or Panx1 null cells. Manipulation of cholesterol levels may, therefore, offer a novel strategy by which Panx1 channel activation might modulate various pathological conditions.


Asunto(s)
Astrocitos , Colesterol , Conexinas , Proteínas del Tejido Nervioso , Neuroblastoma , Humanos , Adenosina Trifosfato/metabolismo , Anticolesterolemiantes/farmacología , Astrocitos/metabolismo , Colesterol/metabolismo , Conexinas/metabolismo , Canales Iónicos/metabolismo , Lovastatina/farmacología , Lípidos de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroblastoma/metabolismo , Estabilidad Proteica
9.
Mol Cancer Res ; 20(2): 319-331, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34654721

RESUMEN

Glioblastoma multiforme (GBM), classified as World Health Organization grade IV astrocytoma, is the deadliest adult cancer of the central nervous system. An important contributing factor to poor survival rates in GBM is extensive invasion, which decreases the efficacy of resection and subsequent adjuvant therapies. These treatments could be markedly improved with increased resolution of the genetic and molecular initiators and effectors of invasion. Connexin 43 (Cx43) is the principal astrocytic gap junction (GJ) protein. Despite the heterogeneity of GBM, a subpopulation of cells in almost all GBM tumors express Cx43. Functional GJs between GBM cells and astrocytes at the tumor edge are of critical interest for understanding invasion. In this study, we find that both in vitro and in ex vivo slice cultures, GBM is substantially less invasive when placed in a Cx43-deficient astrocyte environment. Furthermore, when Cx43 is deleted in GBM, the invasive phenotype is recovered. These data strongly suggest that there are opposing roles for Cx43 in GBM migration. We find that Cx43 is localized to the tumor edge in our ex vivo model, suggesting that GBM-astrocyte GJ communication at the tumor border is a driving force for invasion. Finally, we find that by a Cx43-dependent mechanism, but likely not direct channel-mediated diffusion, miRNAs associated with cell-matrix adhesion are transferred from GBM to astrocytes and miR-19b promotes invasion, revealing a role for post-transcriptional manipulation of astrocytes in fostering an invasion-permissive peritumoral niche. IMPLICATIONS: Cx43-mediated communication, specifically miRNA transfer, profoundly impacts glioblastoma invasion and may enable further therapeutic insight.


Asunto(s)
Astrocitos/metabolismo , Conexina 43/metabolismo , Uniones Comunicantes/patología , Glioblastoma/fisiopatología , Humanos , Invasividad Neoplásica
10.
Sci Rep ; 11(1): 24334, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34934080

RESUMEN

The neurovascular unit (NVU) consists of cells intrinsic to the vessel wall, the endothelial cells and pericytes, and astrocyte endfeet that surround the vessel but are separated from it by basement membrane. Endothelial cells are primarily responsible for creating and maintaining blood-brain-barrier (BBB) tightness, but astrocytes contribute to the barrier through paracrine signaling to the endothelial cells and by forming the glia limitans. Gap junctions (GJs) between astrocyte endfeet are composed of connexin 43 (Cx43) and Cx30, which form plaques between cells. GJ plaques formed of Cx43 do not diffuse laterally in the plasma membrane and thus potentially provide stable organizational features to the endfoot domain, whereas GJ plaques formed of other connexins and of Cx43 lacking a large portion of its cytoplasmic carboxyl terminus are quite mobile. In order to examine the organizational features that immobile GJs impose on the endfoot, we have used super-resolution confocal microscopy to map number and sizes of GJ plaques and aquaporin (AQP)-4 channel clusters in the perivascular endfeet of mice in which astrocyte GJs (Cx30, Cx43) were deleted or the carboxyl terminus of Cx43 was truncated. To determine if BBB integrity was compromised in these transgenic mice, we conducted perfusion studies under elevated hydrostatic pressure using horseradish peroxide as a molecular probe enabling detection of micro-hemorrhages in brain sections. These studies revealed that microhemorrhages were more numerous in mice lacking Cx43 or its carboxyl terminus. In perivascular domains of cerebral vessels, we found that density of Cx43 GJs was higher in the truncation mutant, while GJ size was smaller. Density of perivascular particles formed by AQP4 and its extended isoform AQP4ex was inversely related to the presence of full length Cx43, whereas the ratio of sizes of the particles of the AQP4ex isoform to total AQP4 was directly related to the presence of full length Cx43. Confocal analysis showed that Cx43 and Cx30 were substantially colocalized in astrocyte domains near vasculature of truncation mutant mice. These results showing altered distribution of some astrocyte nexus components (AQP4 and Cx30) in Cx43 null mice and in a truncation mutant, together with leakier cerebral vasculature, support the hypothesis that localization and mobility of gap junction proteins and their binding partners influences organization of astrocyte endfeet which in turn impacts BBB integrity of the NVU.


Asunto(s)
Acuaporina 4/metabolismo , Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Permeabilidad de la Membrana Celular , Conexina 43/fisiología , Conexinas/metabolismo , Endotelio Vascular/metabolismo , Animales , Acuaporina 4/química , Acuaporina 4/genética , Conexinas/química , Conexinas/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteína alfa-5 de Unión Comunicante
11.
iScience ; 24(12): 103478, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34841222

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly rampaged worldwide, causing a pandemic of coronavirus disease (COVID -19), but the biology of SARS-CoV-2 remains under investigation. We demonstrate that both SARS-CoV-2 spike protein and human coronavirus 229E (hCoV-229E) or its purified S protein, one of the main viruses responsible for the common cold, induce the transient opening of Pannexin-1 (Panx-1) channels in human lung epithelial cells. However, the Panx-1 channel opening induced by SARS-CoV-2 is greater and more prolonged than hCoV-229E/S protein, resulting in an enhanced ATP, PGE2, and IL-1ß release. Analysis of lung lavages and tissues indicate that Panx-1 mRNA expression is associated with increased ATP, PGE2, and IL-1ß levels. Panx-1 channel opening induced by SARS-CoV-2 spike protein is angiotensin-converting enzyme 2 (ACE-2), endocytosis, and furin dependent. Overall, we demonstrated that Panx-1 channel is a critical contributor to SARS-CoV-2 infection and should be considered as an alternative therapy.

12.
Bone ; 152: 116072, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34171514

RESUMEN

Microstructural adaptation of bone in response to mechanical stimuli is diminished with estrogen deprivation. Here we tested in vivo whether ovariectomy (OVX) alters the acute response of osteocytes, the principal mechanosensory cells of bone, to mechanical loading in mice. We also used super resolution microscopy (Structured Illumination microscopy or SIM) in conjunction with immunohistochemistry to assess changes in the number and organization of "osteocyte mechanosomes" - complexes of Panx1 channels, P2X7 receptors and CaV3 voltage-gated Ca2+ channels clustered around αvß3 integrin foci on osteocyte processes. Third metatarsals bones of mice expressing an osteocyte-targeted genetically encoded Ca2+ indicator (DMP1-GCaMP3) were cyclically loaded in vivo to strains from 250 to 3000 µÎµ and osteocyte intracellular Ca2+ signaling responses were assessed in mid-diaphyses using multiphoton microscopy. The number of Ca2+ signaling osteocytes in control mice increase monotonically with applied strain magnitude for the physiological range of strains. The relationship between the number of Ca2+ signaling osteocytes and loading was unchanged at 2 days post-OVX. However, it was altered markedly at 28 days post-OVX. At loads up to 1000 µÎµ, there was a dramatic reduction in number of responding (i.e. Ca2+ signaling) osteocytes; however, at higher strains the numbers of Ca2+ signaling osteocytes were similar to control mice. OVX significantly altered the abundance, make-up and organization of osteocyte mechanosome complexes on dendritic processes. Numbers of αvß3 foci also staining with either Panx 1, P2X7R or CaV3 declined by nearly half after OVX, pointing to a loss of osteocyte mechanosomes on the dendritic processes with estrogen depletion. At the same time, the areas of the remaining foci that stained for αvß3 and channel proteins increased significantly, a redistribution of mechanosome components suggesting a potential compensatory response. These results demonstrate that the deleterious effects of estrogen depletion on skeletal mechanical adaptation appear at the level of mechanosensation; osteocytes lose the ability to sense small (physiological) mechanical stimuli. This decline may result at least partly from changes in the structure and organization of osteocyte mechanosomes, which contribute to the distinctive sensitivity of osteocytes (particularly their dendritic processes) to mechanical stimulation.


Asunto(s)
Señalización del Calcio , Osteocitos , Animales , Huesos , Conexinas , Estrógenos , Femenino , Ratones , Proteínas del Tejido Nervioso , Ovariectomía , Estrés Mecánico
13.
Int J Mol Sci ; 22(9)2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33922931

RESUMEN

Anatomical and electrophysiological evidence that gap junctions and electrical coupling occur between neurons was initially confined to invertebrates and nonmammals and was thought to be a primitive form of synaptic transmission. More recent studies revealed that electrical communication is common in the mammalian central nervous system (CNS), often coexisting with chemical synaptic transmission. The subsequent progress indicated that electrical synapses formed by the gap junction protein connexin-36 (Cx36) and its paralogs in nonmammals constitute vital elements in mammalian and fish synaptic circuitry. They govern the collective activity of ensembles of coupled neurons, and Cx36 gap junctions endow them with enormous adaptive plasticity, like that seen at chemical synapses. Moreover, they orchestrate the synchronized neuronal network activity and rhythmic oscillations that underlie the fundamental integrative processes, such as memory and learning. Here, we review the available mechanistic evidence and models that argue for the essential roles of calcium, calmodulin, and the Ca2+/calmodulin-dependent protein kinase II in integrating calcium signals to modulate the strength of electrical synapses through interactions with the gap junction protein Cx36.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calmodulina/fisiología , Conexinas/metabolismo , Sinapsis Eléctricas/fisiología , Animales , Calcio/metabolismo , Conexinas/genética , Sinapsis Eléctricas/metabolismo , Uniones Comunicantes/metabolismo , Humanos , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Mapas de Interacción de Proteínas , Transmisión Sináptica , Proteína delta-6 de Union Comunicante
14.
Front Cell Neurosci ; 15: 647109, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790744

RESUMEN

We transduced mouse cortical astrocytes cultured from four litters of embryonic wildtype (WT) and connexin43 (Cx43) null mouse pups with lentiviral vector encoding hTERT and measured expression of astrocyte-specific markers up to passage 10 (p10). The immortalized cell lines thus generated (designated IWCA and IKOCA, respectively) expressed biomarkers consistent with those of neonatal astrocytes, including Cx43 from wildtype but not from Cx43-null mice, lack of Cx30, and presence of Cx26. AQP4, the water channel that is found in high abundance in astrocyte end-feet, was expressed at moderately high levels in early passages, and its mRNA and protein declined to low but still detectable levels by p10. The mRNA levels of the astrocyte biomarkers aldehyde dehydrogenase 1L1 (ALDH1L1), glutamine synthetase (GS) and glial fibrillary acidic protein (GFAP) remained relatively constant during successive passages. GS protein expression was maintained while GFAP declined with cell passaging but was still detectable at p10. Both mRNA and protein levels of glutamate transporter 1 (GLT-1) declined with passage number. Immunostaining at corresponding times was consistent with the data from Western blots and provided evidence that these proteins were expressed at appropriate intracellular locations. Consistent with our goal of generating immortalized cell lines in which Cx43 was either functionally expressed or absent, IWCA cells were found to be well coupled with respect to intercellular dye transfer and similar to primary astrocyte cultures in terms of time course of junction formation, electrical coupling strength and voltage sensitivity. Moreover, barrier function was enhanced in co-culture of the IWCA cell line with bEnd.3 microvascular endothelial cells. In addition, immunostaining revealed oblate endogenous Cx43 gap junction plaques in IWCA that were similar in appearance to those plaques obtained following transfection of IKOCA cells with fluorescent protein tagged Cx43. Re-expression of Cx43 in IKOCA cells allows experimental manipulation of connexins and live imaging of interactions between connexins and other proteins. We conclude that properties of these cell lines resemble those of primary cultured astrocytes, and they may provide useful tools in functional studies by facilitating genetic and pharmacological manipulations in the context of an astrocyte-appropriate cellular environment.

15.
Genes (Basel) ; 12(3)2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799827

RESUMEN

Glaucoma is a multifactorial neurodegenerative disease, characterized by degeneration of the retinal ganglion cells (RGCs). There has been little progress in developing efficient strategies for neuroprotection in glaucoma. We profiled the retina transcriptome of Lister Hooded rats at 2 weeks after optic nerve crush (ONC) and analyzed the data from the genomic fabric paradigm (GFP) to bring additional insights into the molecular mechanisms of the retinal remodeling after induction of RGC degeneration. GFP considers three independent characteristics for the expression of each gene: level, variability, and correlation with each other gene. Thus, the 17,657 quantified genes in our study generated a total of 155,911,310 values to analyze. This represents 8830x more data per condition than a traditional transcriptomic analysis. ONC led to a 57% reduction in RGC numbers as detected by retrograde labeling with 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI). We observed a higher relative expression variability after ONC. Gene expression stability was used as a measure of transcription control and disclosed a robust reduction in the number of very stably expressed genes. Predicted protein-protein interaction (PPI) analysis with STRING revealed axon and neuron projection as mostly decreased processes, consistent with RGC degeneration. Conversely, immune response PPIs were found among upregulated genes. Enrichment analysis showed that complement cascade and Notch signaling pathway, as well as oxidative stress and kit receptor pathway were affected after ONC. To expand our studies of altered molecular pathways, we examined the pairwise coordination of gene expressions within each pathway and within the entire transcriptome using Pearson correlations. ONC increased the number of synergistically coordinated pairs of genes and the number of similar profiles mainly in complement cascade and Notch signaling pathway. This deep bioinformatic study provided novel insights beyond the regulation of individual gene expression and disclosed changes in the control of expression of complement cascade and Notch signaling functional pathways that may be relevant for both RGC degeneration and remodeling of the retinal tissue after ONC.


Asunto(s)
Glaucoma , Traumatismos del Nervio Óptico , Nervio Óptico , Células Ganglionares de la Retina , Transcriptoma , Animales , Femenino , Glaucoma/genética , Glaucoma/metabolismo , Glaucoma/patología , Nervio Óptico/metabolismo , Nervio Óptico/patología , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Ratas , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología
16.
Nat Rev Neurosci ; 21(12): 732, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33093636

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Sci Rep ; 10(1): 17011, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046777

RESUMEN

Gap junction (GJ) channels permit molecules, such as ions, metabolites and second messengers, to transfer between cells. Their function is critical for numerous cellular interactions, providing exchange of metabolites, signaling molecules, and ionic currents. GJ channels are composed of Connexin (Cx) hexamers paired across extracellular space and typically form large rafts of clustered channels, called plaques, at cell appositions. Cxs together with molecules that interact with GJ channels make up a supramolecular structure known as the GJ Nexus. While the stability of connexin localization in GJ plaques has been studied, mobility of other Nexus components has yet to be addressed. Colocalization analysis of several nexus components and other membrane proteins reveal that certain molecules are excluded from the GJ plaque (Aquaporin 4, EAAT2b), while others are quite penetrant (lipophilic molecules, Cx30, ZO-1, Occludin). Fluorescence recovery after photobleaching of tagged Nexus-associated proteins showed that mobility in plaque domains is affected by mobility of the Cx proteins. These novel findings indicate that the GJ Nexus is a dynamic membrane organelle, with cytoplasmic and membrane-embedded proteins binding and diffusing according to distinct parameters.


Asunto(s)
Conexinas/metabolismo , Citoplasma/metabolismo , Uniones Comunicantes/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Línea Celular Tumoral , Humanos , Canales Iónicos/metabolismo , Ratones , Transporte de Proteínas/fisiología , Proteína de la Zonula Occludens-1/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-32626662

RESUMEN

Chagas disease is responsible for more than 10,000 deaths per year and about 6 to 7 million infected people worldwide. In its chronic stage, patients can develop mega-colon, mega-esophagus, and cardiomyopathy. Differences in clinical outcomes may be determined, in part, by the genetic background of the parasite that causes Chagas disease. Trypanosoma cruzi has a high genetic diversity, and each group of strains may elicit specific pathological responses in the host. Conflicting results have been reported in studies using various combinations of mammalian host-T. cruzi strains. We previously profiled the transcriptomic signatures resulting from infection of L6E9 rat myoblasts with four reference strains of T. cruzi (Brazil, CL, Y, and Tulahuen). The four strains induced similar overall gene expression alterations in the myoblasts, although only 21 genes were equally affected by all strains. Cardiotrophin-like cytokine factor 1 (Clcf1) was one of the genes found to be consistently upregulated by the infection with all four strains of T. cruzi. This cytokine is a member of the interleukin-6 family that binds to glycoprotein 130 receptor and activates the JAK/STAT signaling pathway, which may lead to muscle cell hypertrophy. Another commonly upregulated gene was tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein theta (Ywhaq, 14-3-3 protein Θ), present in the Cell Cycle Pathway. In the present work, we reanalyzed our previous microarray dataset, aiming at understanding in more details the transcriptomic impact that each strain has on JAK/STAT signaling and Cell Cycle pathways. Using Pearson correlation analysis between the expression levels of gene pairs in biological replicas from each pathway, we determined the coordination between such pairs in each experimental condition and the predicted protein interactions between the significantly altered genes by each strain. We found that although these highlighted genes were similarly affected by all four strains, the downstream genes or their interaction partners were not necessarily equally affected, thus reinforcing the idea of the role of parasite background on host cell transcriptome. These new analyses provide further evidence to the mechanistic understanding of how distinct T. cruzi strains lead to diverse remodeling of host cell transcriptome.


Asunto(s)
Trypanosoma cruzi , Animales , Brasil , Ciclo Celular , Humanos , Mioblastos , Ratas , Transducción de Señal , Transcriptoma , Trypanosoma cruzi/genética
19.
Nat Rev Neurosci ; 21(9): 485-498, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32699292

RESUMEN

Satellite glial cells (SGCs) closely envelop cell bodies of neurons in sensory, sympathetic and parasympathetic ganglia. This unique organization is not found elsewhere in the nervous system. SGCs in sensory ganglia are activated by numerous types of nerve injury and inflammation. The activation includes upregulation of glial fibrillary acidic protein, stronger gap junction-mediated SGC-SGC and neuron-SGC coupling, increased sensitivity to ATP, downregulation of Kir4.1 potassium channels and increased cytokine synthesis and release. There is evidence that these changes in SGCs contribute to chronic pain by augmenting neuronal activity and that these changes are consistent in various rodent pain models and likely also in human pain. Therefore, understanding these changes and the resulting abnormal interactions of SGCs with sensory neurons could provide a mechanistic approach that might be exploited therapeutically in alleviation and prevention of pain. We describe how SGCs are altered in rodent models of four common types of pain: systemic inflammation (sickness behaviour), post-surgical pain, diabetic neuropathic pain and post-herpetic pain.


Asunto(s)
Dolor Crónico/fisiopatología , Ganglios Autónomos/fisiopatología , Ganglios Sensoriales/fisiopatología , Células Satélites Perineuronales/fisiología , Animales , Humanos
20.
Nat Commun ; 11(1): 3064, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32528004

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...