Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 7122, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130877

RESUMEN

The global threat of antimicrobial resistance (AMR) varies regionally. This study explores whether geospatial analysis and data visualization methods detect both clinically and statistically significant variations in antibiotic susceptibility rates at a neighborhood level. This observational multicenter geospatial study collected 10 years of patient-level antibiotic susceptibility data and patient addresses from three regionally distinct Wisconsin health systems (UW Health, Fort HealthCare, Marshfield Clinic Health System [MCHS]). We included the initial Escherichia coli isolate per patient per year per sample source with a patient address in Wisconsin (N = 100,176). Isolates from U.S. Census Block Groups with less than 30 isolates were excluded (n = 13,709), resulting in 86,467 E. coli isolates. The primary study outcomes were the results of Moran's I spatial autocorrelation analyses to quantify antibiotic susceptibility as spatially dispersed, randomly distributed, or clustered by a range of - 1 to + 1, and the detection of statistically significant local hot (high susceptibility) and cold spots (low susceptibility) for variations in antibiotic susceptibility by U.S. Census Block Group. UW Health isolates collected represented greater isolate geographic density (n = 36,279 E. coli, 389 = blocks, 2009-2018), compared to Fort HealthCare (n = 5110 isolates, 48 = blocks, 2012-2018) and MCHS (45,078 isolates, 480 blocks, 2009-2018). Choropleth maps enabled a spatial AMR data visualization. A positive spatially-clustered pattern was identified from the UW Health data for ciprofloxacin (Moran's I = 0.096, p = 0.005) and trimethoprim/sulfamethoxazole susceptibility (Moran's I = 0.180, p < 0.001). Fort HealthCare and MCHS distributions were likely random. At the local level, we identified hot and cold spots at all three health systems (90%, 95%, and 99% CIs). AMR spatial clustering was observed in urban areas but not rural areas. Unique identification of AMR hot spots at the Block Group level provides a foundation for future analyses and hypotheses. Clinically meaningful differences in AMR could inform clinical decision support tools and warrants further investigation for informing therapy options.


Asunto(s)
Ciprofloxacina , Escherichia coli , Humanos , Estados Unidos , Wisconsin , Combinación Trimetoprim y Sulfametoxazol , Antibacterianos/farmacología
2.
J Clin Microbiol ; 56(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29118166

RESUMEN

The Wisconsin State Laboratory of Hygiene challenged Wisconsin laboratories to examine their biosafety practices and improve their culture of biosafety. One hundred three clinical and public health laboratories completed a questionnaire-based, microbiology-focused biosafety risk assessment. Greater than 96% of the respondents performed activities related to specimen processing, direct microscopic examination, and rapid nonmolecular testing, while approximately 60% performed culture interpretation. Although they are important to the assessment of risk, data specific to patient occupation, symptoms, and travel history were often unavailable to the laboratory and, therefore, less contributory to a microbiology-focused biosafety risk assessment than information on the specimen source and test requisition. Over 88% of the respondents complied with more than three-quarters of the mitigation control measures listed in the survey. Facility assessment revealed that subsets of laboratories that claim biosafety level 1, 2, or 3 status did not possess all of the biosafety elements considered minimally standard for their respective classifications. Many laboratories reported being able to quickly correct the minor deficiencies identified. Task assessment identified deficiencies that trended higher within the general (not microbiology-specific) laboratory for core activities, such as packaging and shipping, direct microscopic examination, and culture modalities solely involving screens for organism growth. For traditional microbiology departments, opportunities for improvement in the cultivation and management of highly infectious agents, such as acid-fast bacilli and systemic fungi, were revealed. These results derived from a survey of a large cohort of small- and large-scale laboratories suggest the necessity for continued microbiology-based understanding of biosafety practices, vigilance toward biosafety, and enforcement of biosafety practices throughout the laboratory setting.


Asunto(s)
Contención de Riesgos Biológicos/estadística & datos numéricos , Laboratorios/estadística & datos numéricos , Técnicas Microbiológicas/estadística & datos numéricos , Medición de Riesgo/estadística & datos numéricos , Manejo de Especímenes/estadística & datos numéricos , Contención de Riesgos Biológicos/normas , Adhesión a Directriz/estadística & datos numéricos , Encuestas de Atención de la Salud , Humanos , Laboratorios/normas , Técnicas Microbiológicas/normas , Medición de Riesgo/normas , Manejo de Especímenes/normas , Wisconsin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA