Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 85(5): 053102, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24880348

RESUMEN

We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 µm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold (87)Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.

2.
Phys Rev Lett ; 104(12): 120402, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20366518

RESUMEN

We show that three-body loss of trapped atoms leads to sub-Poissonian atom-number fluctuations. We prepare hundreds of dense ultracold ensembles in an array of magnetic microtraps which undergo rapid three-body decay. The shot-to-shot fluctuations of the number of atoms per trap are sub-Poissonian, for ensembles comprising 50-300 atoms. The measured relative variance or Fano factor F=0.53+/-0.22 agrees very well with the prediction by an analytic theory (F=3/5) and numerical calculations. These results will facilitate studies of quantum information science with mesoscopic ensembles.

3.
Phys Rev Lett ; 88(13): 137901, 2002 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-11955125

RESUMEN

We report on an experiment on Grover's quantum search algorithm showing that classical waves can search a N-item database as efficiently as quantum mechanics can. The transverse beam profile of a short laser pulse is processed iteratively as the pulse bounces back and forth between two mirrors. We directly observe the sought item being found in approximately square root[N] iterations, in the form of a growing intensity peak on this profile. Although the lack of quantum entanglement limits the size of our database, our results show that entanglement is neither necessary for the algorithm itself, nor for its efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA