Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39233113

RESUMEN

The honey bee (Apis mellifera L.), as an eusocial insect species, is an important model organism in research focusing on ageing and longevity, due to prominent seasonal lifespan plasticity within the worker caste (summer and winter worker bees). In this study, we employed a screening approach to evaluate several molecular parameters, providing comprehensive insights into the antioxidative (superoxide dismutase and catalase activity, reduced glutathione and sulfhydryl group content, total antioxidative capacity), detoxifying (glutathione S-transferase and acetylcholinesterase activity), and immune (phenol oxidase and glucose oxidase activity) status, as well as vitellogenin content, in the summer and winter generation of honey bees, across ageing stages and in two body compartments: the whole abdomen and the head. Summer worker bees were collected weekly for six weeks, while winter bees were collected monthly for five months. The results of our study clearly indicate a reduced overall antioxidative capacity of older groups of worker bees from both generations, while the parameters of immune responsiveness mostly contributed to the separation between the two generations based on season rather than age categories. Detoxification ability appeared to be more susceptible to environmental factors. An age-dependent increase in vitellogenin content was recorded in the abdomen, but without seasonal differences. These findings provide an excellent starting point for further investigations into age-related changes, particularly within the context of honey bee sociality.


Asunto(s)
Envejecimiento , Estrés Oxidativo , Vitelogeninas , Animales , Abejas/inmunología , Abejas/fisiología , Vitelogeninas/metabolismo , Antioxidantes/metabolismo , Estaciones del Año , Glutatión Transferasa/metabolismo , Inactivación Metabólica , Catalasa/metabolismo , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Oxidación-Reducción
2.
PLoS One ; 19(7): e0306430, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38950057

RESUMEN

Polyamines (PAs), including putrescine (Put), spermidine (Spd), and spermine (Spm), are essential polycations with wide-ranging roles in cellular functions. PA levels decline with age, making exogenous PA supplementation, particularly Spd, an intriguing prospect. Previous research in honey bees demonstrated that millimolar Spd added to their diet increased lifespan and reinforced oxidative resilience. The present study is aimed to assess the anti-aging effects of spermidine supplementation at concentrations of 0.1 and 1 mM in honey bees, focusing on autophagy and associated epigenetic changes. Results showed a more pronounced effect at the lower Spd concentration, primarily in the abdomen. Spd induced site-specific histone 3 hypoacetylation at sites K18 and 27, hyperacetylation at K9, with no change at K14 in the entire body. Additionally, autophagy-related genes (ATG3, 5, 9, 13) and genes associated with epigenetic changes (HDAC1, HDAC3, SIRT1, KAT2A, KAT6B, P300, DNMT1A, DNMT1B) were upregulated in the abdomens of honey bees. In conclusion, our findings highlight profound epigenetic changes and autophagy promotion due to spermidine supplementation, contributing to increased honey bee longevity. Further research is needed to fully understand the precise mechanisms and the interplay between epigenetic alterations and autophagy in honey bees, underscoring the significance of autophagy as a geroprotective mechanism.


Asunto(s)
Autofagia , Suplementos Dietéticos , Epigénesis Genética , Espermidina , Animales , Espermidina/farmacología , Abejas/genética , Abejas/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/genética , Epigénesis Genética/efectos de los fármacos , Histonas/metabolismo , Acetilación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA