Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 1(3)2010 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-20824104

RESUMEN

The type III secretion system (T3SS) is an interspecies protein transport machine that plays a major role in interactions of Gram-negative bacteria with animals and plants by delivering bacterial effector proteins into host cells. T3SSs span both membranes of Gram-negative bacteria by forming a structure of connected oligomeric rings termed the needle complex (NC). Here, the localization of subunits in the Salmonella enterica serovar Typhimurium T3SS NC were probed via mass spectrometry-assisted identification of chemical cross-links in intact NC preparations. Cross-links between amino acids near the amino terminus of the outer membrane ring component InvG and the carboxyl terminus of the inner membrane ring component PrgH and between the two inner membrane components PrgH and PrgK allowed for spatial localization of the three ring components within the electron density map structures of NCs. Mutational and biochemical analysis demonstrated that the amino terminus of InvG and the carboxyl terminus of PrgH play a critical role in the assembly and function of the T3SS apparatus. Analysis of an InvG mutant indicates that the structure of the InvG oligomer can affect the switching of the T3SS substrate to translocon and effector components. This study provides insights into how structural organization of needle complex base components promotes T3SS assembly and function.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Salmonella typhimurium/metabolismo , Proteínas Bacterianas/genética , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Salmonella typhimurium/química , Salmonella typhimurium/genética
2.
J Biol Chem ; 285(25): 19679-87, 2010 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-20410297

RESUMEN

Nascent polypeptide-associated complex (NAC) was identified in eukaryotes as the first cytosolic factor that contacts the nascent polypeptide chain emerging from the ribosome. NAC is present as a homodimer in archaea and as a highly conserved heterodimer in eukaryotes. Mutations in NAC cause severe embryonically lethal phenotypes in mice, Drosophila melanogaster, and Caenorhabditis elegans. In the yeast Saccharomyces cerevisiae NAC is quantitatively associated with ribosomes. Here we show that NAC contacts several ribosomal proteins. The N terminus of betaNAC, however, specifically contacts near the tunnel exit ribosomal protein Rpl31, which is unique to eukaryotes and archaea. Moreover, the first 23 amino acids of betaNAC are sufficient to direct an otherwise non-associated protein to the ribosome. In contrast, alphaNAC (Egd2p) contacts Rpl17, the direct neighbor of Rpl31 at the ribosomal tunnel exit site. Rpl31 was also recently identified as a contact site for the SRP receptor and the ribosome-associated complex. Furthermore, in Escherichia coli peptide deformylase (PDF) interacts with the corresponding surface area on the eubacterial ribosome. In addition to the previously identified universal adapter site represented by Rpl25/Rpl35, we therefore refer to Rpl31/Rpl17 as a novel universal docking site for ribosome-associated factors on the eukaryotic ribosome.


Asunto(s)
Péptidos/química , Ribosomas/química , Aminoácidos/química , Animales , Chaperoninas/química , Reactivos de Enlaces Cruzados/química , Escherichia coli/metabolismo , Humanos , Ratones , Mutación , Fenotipo , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Ribosómicas/química
3.
Nat Struct Mol Biol ; 17(5): 582-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20400947

RESUMEN

Teichoic acid polymers are composed of polyol-phosphate units and form a major component of Gram-positive bacterial cell walls. These anionic compounds perform a multitude of important roles in bacteria and are synthesized by monotopic membrane proteins of the TagF polymerase family. We have determined the structure of Staphylococcus epidermidis TagF to 2.7-A resolution from a construct that includes both the membrane-targeting region and the glycerol-phosphate polymerase domains. TagF possesses a helical region for interaction with the lipid bilayer, placing the active site at a suitable distance for access to the membrane-bound substrate. Characterization of active-site residue variants and analysis of a CDP-glycerol substrate complex suggest a mechanism for polymer synthesis. With the importance of teichoic acid in Gram-positive physiology, this elucidation of the molecular details of TagF function provides a critical new target in the development of novel anti-infectives.


Asunto(s)
Proteínas Bacterianas/química , Staphylococcus epidermidis/enzimología , Ácidos Teicoicos/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Secuencias de Aminoácidos , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Azúcares de Nucleósido Difosfato/química , Azúcares de Nucleósido Difosfato/metabolismo , Conformación Proteica , Ácidos Teicoicos/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
4.
J Biol Chem ; 285(12): 8801-7, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20053990

RESUMEN

We have used site-directed mutagenesis, EPR spectroscopy, redox potentiometry, and protein crystallography to monitor assembly of the FS0 [4Fe-4S] cluster and molybdo-bis(pyranopterin guanine dinucleotide) cofactor (Mo-bisPGD) of the Escherichia coli nitrate reductase A (NarGHI) catalytic subunit (NarG). Cys and Ser mutants of NarG-His(49) both lack catalytic activity, with only the former assembling FS0 and Mo-bisPGD. Importantly, both prosthetic groups are absent in the NarG-H49S mutant. EPR spectroscopy of the Cys mutant reveals that the E(m) value of the FS0 cluster is decreased by at least 500 mV, preventing its participation in electron transfer to the Mo-bisPGD cofactor. To demonstrate that decreasing the FS0 cluster E(m) results in decreased enzyme activity, we mutated a critical Arg residue (NarG-Arg(94)) in the vicinity of FS0 to a Ser residue. In this case, the E(m) of FS0 is decreased by 115 mV, with a concomitant decrease in enzyme turnover to approximately 30% of the wild type. Analysis of the structure of the NarG-H49S mutant reveals two important aspects of NarGHI maturation: (i) apomolybdo-NarGHI is able to bind GDP moieties at their respective P and Q sites in the absence of the Mo-bisPGD cofactor, and (ii) a critical segment of residues in NarG, (49)HGVNCTG(55), must be correctly positioned to ensure holoenzyme maturation.


Asunto(s)
Escherichia coli/enzimología , Nitrato Reductasas/química , Catálisis , Membrana Celular/metabolismo , Cristalografía por Rayos X/métodos , Cisteína/química , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Proteínas Hierro-Azufre/química , Molibdeno/química , Mutagénesis Sitio-Dirigida , Mutación , Oxígeno/química , Serina/química
5.
Nat Struct Mol Biol ; 16(5): 468-76, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19396170

RESUMEN

The type III secretion system (T3SS) is a macromolecular 'injectisome' that allows bacterial pathogens to transport virulence proteins into the eukaryotic host cell. This macromolecular complex is composed of connected ring-like structures that span both bacterial membranes. The crystal structures of the periplasmic domain of the outer membrane secretin EscC and the inner membrane protein PrgH reveal the conservation of a modular fold among the three proteins that form the outer membrane and inner membrane rings of the T3SS. This leads to the hypothesis that this conserved fold provides a common ring-building motif that allows for the assembly of the variably sized outer membrane and inner membrane rings characteristic of the T3SS. Using an integrated structural and experimental approach, we generated ring models for the periplasmic domain of EscC and placed them in the context of the assembled T3SS, providing evidence for direct interaction between the outer membrane and inner membrane ring components and an unprecedented span of the outer membrane secretin.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia Conservada , Periplasma/metabolismo , Salmonella typhimurium/patogenicidad , Factores de Virulencia/química , Factores de Virulencia/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/ultraestructura , Cristalografía por Rayos X , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Secretina/química , Secretina/metabolismo , Relación Estructura-Actividad
6.
Curr Opin Struct Biol ; 18(2): 258-66, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18258424

RESUMEN

The Type III secretion system is a bacterial 'injectisome' which allows Gram-negative bacteria to shuttle virulence proteins directly into the host cells they infect. This macromolecular assembly consists of more than 20 different proteins put together to collectively span three biological membranes. The recent T3SS crystal structures of the major oligomeric inner membrane ring, the helical needle filament, needle tip protein, the associated ATPase, and outer membrane pilotin together with electron microscopy reconstructions have dramatically furthered our understanding of how this protein translocator functions. The crucial details that describe how these proteins assemble into this oligomeric complex will need a hybrid of structural methodologies including EM, crystallography, and NMR to clarify the intra- and inter-molecular interactions between different structural components of the apparatus.


Asunto(s)
Bacterias/metabolismo , Bacterias/patogenicidad , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Espacio Extracelular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Factores de Virulencia/metabolismo
7.
J Biol Chem ; 280(51): 42423-32, 2005 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-16257976

RESUMEN

The transcription factor RovA of Yersinia pseudotuberculosis and analogous proteins in other Enterobacteriaceae activate the expression of virulence genes that play a crucial role in stress adaptation and pathogenesis. In this study, we demonstrate that the RovA protein forms dimers independent of DNA binding, stimulates RNA polymerase, most likely via its C-terminal domain, and counteracts transcriptional repression by the histone-like protein H-NS. As the molecular function of the RovA family is largely uncharacterized, random mutagenesis and terminal deletions were used to identify functionally important domains. Our analysis showed that a winged-helix motif in the center of the molecule is essential and directly involved in DNA binding. Terminal deletions and amino acid changes within both termini also abrogate RovA activation and DNA-binding functions, most likely due to their implication in dimer formation. Finally, we show that the last four amino acids of RovA are crucial for activation of gene transcription. Successive deletions of these residues result in a continuous loss of RovA activity. Their removal reduced the capacity of RovA to activate RNA polymerase and abolished transcription of RovA-activated promoters in the presence of H-NS, although dimerization and DNA binding functions were retained. Our structural model implies that the final amino acids of RovA play a role in protein-protein interactions, adjusting RovA activity.


Asunto(s)
Proteínas Bacterianas/fisiología , Factores de Transcripción/fisiología , Activación Transcripcional/fisiología , Yersinia pseudotuberculosis/patogenicidad , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Cromatografía en Gel , Cartilla de ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , Mutagénesis Sitio-Dirigida , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Virulencia/fisiología , Yersinia pseudotuberculosis/genética
8.
J Biol Chem ; 280(16): 15849-54, 2005 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-15665334

RESUMEN

Nascent polypeptide-associated complex (NAC) was identified in eukaryotes as the first cytosolic factor that contacts the nascent polypeptide chain emerging from the ribosome. NAC is highly conserved from yeast to humans. Mutations in NAC cause severe embryonically lethal phenotypes in mice, Drosophila, and Caenorhabditis elegans. NAC was suggested to protect the nascent chain from inappropriate early interactions with cytosolic factors. Eukaryotic NAC is a heterodimer with two subunits sharing substantial homology with each other. All sequenced archaebacterial genomes exhibit only one gene homologous to the NAC subunits. Here we present the first archaebacterial NAC homolog. It forms a homodimer, and as eukaryotic NAC it is associated with ribosomes and contacts the emerging nascent chain on the ribosome. We present the first crystal structure of a NAC protein revealing two structural features: (i) a novel unique protein fold that mediates dimerization of the complex, and (ii) a ubiquitin-associated domain that suggests a yet unidentified role for NAC in the cellular protein quality control system via the ubiquitination pathway. Based on the presented structure we propose a model for the eukaryotic heterodimeric NAC domain.


Asunto(s)
Methanobacteriaceae/metabolismo , Transactivadores/química , Ubiquitina/metabolismo , Cristalografía por Rayos X , Chaperonas Moleculares , Estructura Terciaria de Proteína , Ribosomas/metabolismo , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...