Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Neurobiol Dis ; 193: 106437, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367882

RESUMEN

TDP-43 pathology is found in several neurodegenerative disorders, collectively referred to as "TDP-43 proteinopathies". Aggregates of TDP-43 are present in the brains and spinal cords of >97% of amyotrophic lateral sclerosis (ALS), and in brains of ∼50% of frontotemporal dementia (FTD) patients. While mutations in the TDP-43 gene (TARDBP) are usually associated with ALS, many clinical reports have linked these mutations to cognitive impairments and/or FTD, but also to other neurodegenerative disorders including Parkinsonism (PD) or progressive supranuclear palsy (PSP). TDP-43 is a ubiquitously expressed, highly conserved RNA-binding protein that is involved in many cellular processes, mainly RNA metabolism. To investigate systemic pathological mechanisms in TDP-43 proteinopathies, aiming to capture the pleiotropic effects of TDP-43 mutations, we have further characterised a mouse model carrying a point mutation (M323K) within the endogenous Tardbp gene. Homozygous mutant mice developed cognitive and behavioural deficits as early as 3 months of age. This was coupled with significant brain structural abnormalities, mainly in the cortex, hippocampus, and white matter fibres, together with progressive cortical interneuron degeneration and neuroinflammation. At the motor level, progressive phenotypes appeared around 6 months of age. Thus, cognitive phenotypes appeared to be of a developmental origin with a mild associated progressive neurodegeneration, while the motor and neuromuscular phenotypes seemed neurodegenerative, underlined by a progressive loss of upper and lower motor neurons as well as distal denervation. This is accompanied by progressive elevated TDP-43 protein and mRNA levels in cortex and spinal cord of homozygous mutant mice from 3 months of age, together with increased cytoplasmic TDP-43 mislocalisation in cortex, hippocampus, hypothalamus, and spinal cord at 12 months of age. In conclusion, we find that Tardbp M323K homozygous mutant mice model many aspects of human TDP-43 proteinopathies, evidencing a dual role for TDP-43 in brain morphogenesis as well as in the maintenance of the motor system, making them an ideal in vivo model system to study the complex biology of TDP-43.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Proteinopatías TDP-43 , Animales , Preescolar , Humanos , Ratones , Esclerosis Amiotrófica Lateral/metabolismo , Encéfalo/metabolismo , Cognición , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Proteinopatías TDP-43/genética , Proteinopatías TDP-43/patología
2.
Dis Model Mech ; 16(10)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37772684

RESUMEN

Variants in the ubiquitously expressed DNA/RNA-binding protein FUS cause aggressive juvenile forms of amyotrophic lateral sclerosis (ALS). Most FUS mutation studies have focused on motor neuron degeneration; little is known about wider systemic or developmental effects. We studied pleiotropic phenotypes in a physiological knock-in mouse model carrying the pathogenic FUSDelta14 mutation in homozygosity. RNA sequencing of multiple organs aimed to identify pathways altered by the mutant protein in the systemic transcriptome, including metabolic tissues, given the link between ALS-frontotemporal dementia and altered metabolism. Few genes were commonly altered across all tissues, and most genes and pathways affected were generally tissue specific. Phenotypic assessment of mice revealed systemic metabolic alterations related to the pathway changes identified. Magnetic resonance imaging brain scans and histological characterisation revealed that homozygous FUSDelta14 brains were smaller than heterozygous and wild-type brains and displayed significant morphological alterations, including a thinner cortex, reduced neuronal number and increased gliosis, which correlated with early cognitive impairment and fatal seizures. These findings show that the disease aetiology of FUS variants can include both neurodevelopmental and systemic alterations.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ratones , Animales , Esclerosis Amiotrófica Lateral/patología , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Mutación/genética , Neuronas/metabolismo
3.
Brain Behav ; 12(11): e2801, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36259950

RESUMEN

INTRODUCTION: Endothelial nitric oxide synthase (eNOS) produces nitric oxide, which is essential for a variety of physiological functions in the brain. Previous work has demonstrated the detrimental effects of eNOS deficiency on brain function in male eNOS knockout (eNOS KO) mice. However, the effect of eNOS deficiency on brain structure and any association between these effects and sex is unknown. METHODS: This study used three-dimensional high-resolution ex vivo magnetic resonance imaging and behavioral tests of anxiety and cognitive performance to investigate structure-function relationships in the brain of female and male eNOS KO mice in young adulthood. RESULTS: While there were no differences in anxiety-like behavior or locomotion, there was a sex-specific deficit in contextual fear memory retention in male, but not in female, eNOS mice compared to wild-type controls. Moreover, we found that eNOS deficiency induced changes in multiple brain regions that are involved in learning and fear memory including the hippocampus, amygdala, hypothalamus, and areas of the cortex. Several of these MRI-detectable neuroanatomical changes were dependent on sex. CONCLUSION: The observation that eNOS deficiency impacts brain structure at an early age demonstrates the importance of eNOS for healthy brain development.


Asunto(s)
Encéfalo , Óxido Nítrico Sintasa de Tipo III , Animales , Femenino , Masculino , Ratones , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico , Óxido Nítrico Sintasa de Tipo III/genética
4.
JCI Insight ; 7(12)2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35536649

RESUMEN

People living with multiple sclerosis (MS) experience episodic CNS white matter lesions instigated by autoreactive T cells. With age, patients with MS show evidence of gray matter demyelination and experience devastating nonremitting symptomology. What drives progression is unclear and studying this has been hampered by the lack of suitable animal models. Here, we show that passive experimental autoimmune encephalomyelitis (EAE) induced by an adoptive transfer of young Th17 cells induced a nonremitting clinical phenotype that was associated with persistent leptomeningeal inflammation and cortical pathology in old, but not young, SJL/J mice. Although the quantity and quality of T cells did not differ in the brains of old versus young EAE mice, an increase in neutrophils and a decrease in B cells were observed in the brains of old mice. Neutrophils were also found in the leptomeninges of a subset of progressive MS patient brains that showed evidence of leptomeningeal inflammation and subpial cortical demyelination. Taken together, our data show that while Th17 cells initiate CNS inflammation, subsequent clinical symptoms and gray matter pathology are dictated by age and associated with other immune cells, such as neutrophils.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Sustancia Gris/patología , Humanos , Inflamación , Ratones , Neutrófilos/patología
5.
Mol Psychiatry ; 27(7): 3047-3055, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35422470

RESUMEN

Extensive evidence supports the role of the immune system in modulating brain function and behaviour. However, past studies have revealed striking heterogeneity in behavioural phenotypes produced from immune system dysfunction. Using magnetic resonance imaging, we studied the neuroanatomical differences among 11 distinct genetically modified mouse lines (n = 371), each deficient in a different element of the immune system. We found a significant and heterogeneous effect of immune dysfunction on the brains of both male and female mice. However, by imaging the whole brain and using Bayesian hierarchical modelling, we were able to identify patterns within the heterogeneous phenotype. Certain structures-such as the corpus callosum, midbrain, and thalamus-were more likely to be affected by immune dysfunction. A notable brain-behaviour relationship was identified with neuroanatomy endophenotypes across mouse models clustering according to anxiety-like behaviour phenotypes reported in literature, such as altered volume in brains regions associated with promoting fear response (e.g., the lateral septum and cerebellum). Interestingly, genes with preferential spatial expression in the most commonly affected regions are also associated with multiple sclerosis and other immune-mediated diseases. In total, our data suggest that the immune system modulates anxiety behaviour through well-established brain networks.


Asunto(s)
Encéfalo , Neuroanatomía , Animales , Ansiedad , Teorema de Bayes , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Imagen por Resonancia Magnética , Masculino , Ratones , Fenotipo
6.
Proc Natl Acad Sci U S A ; 119(12): e2114545119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35286203

RESUMEN

Exposure to maternal immune activation (MIA) in utero is a risk factor for neurodevelopmental and psychiatric disorders. MIA-induced deficits in adolescent and adult offspring have been well characterized; however, less is known about the effects of MIA exposure on embryo development. To address this gap, we performed high-resolution ex vivo MRI to investigate the effects of early (gestational day [GD]9) and late (GD17) MIA exposure on embryo (GD18) brain structure. We identify striking neuroanatomical changes in the embryo brain, particularly in the late-exposed offspring. We further examined the putative neuroanatomical underpinnings of MIA timing in the hippocampus using electron microscopy and identified differential effects due to MIA timing. An increase in apoptotic cell density was observed in the GD9-exposed offspring, while an increase in the density of neurons and glia with ultrastructural features reflective of increased neuroinflammation and oxidative stress was observed in GD17-exposed offspring, particularly in females. Overall, our findings integrate imaging techniques across different scales to identify differential impact of MIA timing on the earliest stages of neurodevelopment.


Asunto(s)
Trastorno del Espectro Autista , Sistema Inmunológico , Efectos Tardíos de la Exposición Prenatal , Esquizofrenia , Adolescente , Animales , Encéfalo , Modelos Animales de Enfermedad , Femenino , Humanos , Sistema Inmunológico/fisiología , Inflamación , Imagen por Resonancia Magnética , Ratones , Embarazo
7.
J Cereb Blood Flow Metab ; 42(1): 74-89, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34515549

RESUMEN

A vascular insult occurring early in disease onset may initiate cognitive decline leading to dementia, while pharmacological and lifestyle interventions can prevent this progression. Mice with a selective, tamoxifen-inducible deletion of NF-κB essential modulator (Nemo) in brain endothelial cells were studied as a model of vascular cognitive impairment. Groups included NemoFl controls and three NemobeKO groups: One untreated, and two treated with simvastatin or exercise. Social preference and nesting were impaired in NemobeKO mice and were not countered by treatments. Cerebrovascular function was compromised in NemobeKO groups regardless of treatment, with decreased changes in sensory-evoked cerebral blood flow and total hemoglobin levels, and impaired endothelium-dependent vasodilation. NemobeKO mice had increased string vessel pathology, blood-brain barrier disruption, neuroinflammation, and reduced cortical somatostatin-containing interneurons. These alterations were reversed when endothelial function was recovered. Findings strongly suggest that damage to the cerebral endothelium can trigger pathologies associated with dementia and its functional integrity should be an effective target in future therapeutic efforts.


Asunto(s)
Encéfalo , Circulación Cerebrovascular , Disfunción Cognitiva , Endotelio Vascular , Interneuronas/metabolismo , Vasodilatación , Animales , Velocidad del Flujo Sanguíneo , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Encéfalo/fisiopatología , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/prevención & control , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Femenino , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Noqueados , Somatostatina/metabolismo
8.
Neuroimage Clin ; 32: 102868, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34749289

RESUMEN

Prenatal exposure to maternal immune activation (MIA) is a risk factor for a variety of neurodevelopmental and psychiatric disorders. The timing of MIA-exposure has been shown to affect adolescent and adult offspring neurodevelopment, however, less is known about these effects in the neonatal period. To better understand the impact of MIA-exposure on neonatal brain development in a mouse model, we assess neonate communicative abilities with the ultrasonic vocalization task, followed by high-resolution ex vivo magnetic resonance imaging (MRI) on the neonatal (postnatal day 8) mouse brain. Early exposed offspring displayed decreased communicative ability, while brain anatomy appeared largely unaffected, apart from some subtle alterations. By integrating MRI and behavioural assays to investigate the effects of MIA-exposure on neonatal neurodevelopment we show that offspring neuroanatomy and behaviour are only subtly affected by both early and late exposure. This suggests that the deficits often observed in later stages of life may be dormant, not yet developed in the neonatal period, or not as easily detectable using a cross-sectional approach.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Animales , Conducta Animal , Encéfalo/diagnóstico por imagen , Modelos Animales de Enfermedad , Femenino , Ratones , Embarazo
9.
Front Immunol ; 12: 570425, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732230

RESUMEN

Peroxisome proliferator-activated receptor (PPAR)-δ is a nuclear receptor that functions to maintain metabolic homeostasis, regulate cell growth, and limit the development of excessive inflammation during immune responses. Previously, we reported that PPAR-δ-deficient mice develop a more severe clinical course of experimental autoimmune encephalomyelitis (EAE); however, it was difficult to delineate the role that microglia played in this disease phenotype since PPAR-δ-deficient mice exhibited a number of immune defects that enhanced CNS inflammation upstream of microglia activation. Here, we specifically investigated the role of PPAR-δ in microglia during EAE by using mice where excision of a floxed Ppard allele was driven by expression of a tamoxifen (TAM)-inducible CX3C chemokine receptor 1 promoter-Cre recombinase transgene (Cx3cr1CreERT2: Ppardfl/fl). We observed that by 30 days of TAM treatment, Cx3cr1CreERT2: Ppardfl/fl mice exhibited Cre-mediated deletion primarily in microglia and this was accompanied by efficient knockdown of Ppard expression in these cells. Upon induction of EAE, TAM-treated Cx3cr1CreERT2: Ppardfl/fl mice presented with an exacerbated course of disease compared to TAM-treated Ppardfl/fl controls. Histopathological and magnetic resonance (MR) studies on the spinal cord and brains of EAE mice revealed increased Iba-1 immunoreactivity, axonal injury and CNS tissue loss in the TAM-treated Cx3cr1CreERT2: Ppardfl/fl group compared to controls. In early EAE, a time when clinical scores and the infiltration of CD45+ leukocytes was equivalent between Cx3cr1CreERT2: Ppardfl/fl and Ppardfl/fl mice, Ppard-deficient microglia exhibited a more reactive phenotype as evidenced by a shorter maximum process length and lower expression of genes associated with a homeostatic microglia gene signature. In addition, Ppard-deficient microglia exhibited increased expression of genes associated with reactive oxygen species generation, phagocytosis and lipid clearance, M2-activation, and promotion of inflammation. Our results therefore suggest that PPAR-δ has an important role in microglia in limiting bystander tissue damage during neuroinflammation.


Asunto(s)
Axones/metabolismo , Encefalomielitis Autoinmune Experimental/etiología , Encefalomielitis Autoinmune Experimental/metabolismo , Microglía/inmunología , Microglía/metabolismo , PPAR delta/deficiencia , Animales , Axones/patología , Células Cultivadas , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Encefalomielitis Autoinmune Experimental/diagnóstico , Activación de Linfocitos/inmunología , Imagen por Resonancia Magnética , Ratones , Ratones Noqueados , Microglía/patología , Índice de Severidad de la Enfermedad , Linfocitos T/inmunología , Linfocitos T/metabolismo
10.
Transl Psychiatry ; 11(1): 149, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33654064

RESUMEN

Maternal environmental exposures, such as high-fat diets, diabetes and obesity, can induce long-term effects in offspring. These effects include increased risk of neurodevelopmental disorders (NDDs) including autism spectrum disorder (ASD), depression and anxiety. The mechanisms underlying these late-life neurologic effects are unknown. In this article, we measured changes in the offspring brain and determined which brain regions are sensitive to maternal metabolic milieu and therefore may mediate NDD risk. We showed that mice exposed to a maternal high-fat diet display extensive brain changes in adulthood despite being switched to a low-fat diet at weaning. Brain regions impacted by early-life diet include the extended amygdalar system, which plays an important role in reward-seeking behaviour. Genes preferentially expressed in these regions have functions related to feeding behaviour, while also being implicated in human NDDs, such as autism. Our data demonstrated that exposure to maternal high-fat diet in early-life leads to brain alterations that persist into adulthood, even after dietary modifications.


Asunto(s)
Trastorno del Espectro Autista , Efectos Tardíos de la Exposición Prenatal , Adulto , Hijos Adultos , Animales , Trastorno del Espectro Autista/etiología , Encéfalo , Dieta Alta en Grasa/efectos adversos , Femenino , Humanos , Ratones , Embarazo
11.
Nat Commun ; 10(1): 1703, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30979871

RESUMEN

Multiple vertebrate embryonic structures such as organ primordia are composed of confluent cells. Although mechanisms that shape tissue sheets are increasingly understood, those which shape a volume of cells remain obscure. Here we show that 3D mesenchymal cell intercalations are essential to shape the mandibular arch of the mouse embryo. Using a genetically encoded vinculin tension sensor that we knock-in to the mouse genome, we show that cortical force oscillations promote these intercalations. Genetic loss- and gain-of-function approaches show that Wnt5a functions as a spatial cue to coordinate cell polarity and cytoskeletal oscillation. These processes diminish tissue rigidity and help cells to overcome the energy barrier to intercalation. YAP/TAZ and PIEZO1 serve as downstream effectors of Wnt5a-mediated actomyosin polarity and cytosolic calcium transients that orient and drive mesenchymal cell intercalations. These findings advance our understanding of how developmental pathways regulate biophysical properties and forces to shape a solid organ primordium.


Asunto(s)
Polaridad Celular , Citoesqueleto/fisiología , Mandíbula/embriología , Mandíbula/fisiología , Proteína Wnt-5a/fisiología , Citoesqueleto de Actina , Actomiosina/metabolismo , Animales , Calcio/metabolismo , Ciclo Celular , Citosol/metabolismo , Elasticidad , Células Epiteliales/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Mutación , Oscilometría , Transducción de Señal , Estrés Mecánico , Vinculina/metabolismo , Viscosidad
12.
Curr Protoc Mouse Biol ; 8(2): e44, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29927554

RESUMEN

This article describes a detailed set of protocols for mouse brain imaging using MRI. We focus primarily on measuring changes in neuroanatomy, and provide both instructions for mouse preparation and details on image acquisition, image processing, and statistics. Practical details as well as theoretical considerations are provided. © 2018 by John Wiley & Sons, Inc.


Asunto(s)
Encéfalo/diagnóstico por imagen , Ratones/anatomía & histología , Animales , Encéfalo/anatomía & histología , Femenino , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino
13.
Neuroimage ; 173: 551-563, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29501873

RESUMEN

Biological sex influences brain anatomy across many species. Sex differences in brain anatomy have classically been attributed to differences in sex chromosome complement (XX versus XY) and/or in levels of gonadal sex steroids released from ovaries and testes. Using the four core genotype (4CG) mouse model in which gonadal sex and sex chromosome complement are decoupled, we previously found that sex hormones and chromosomes influence the volume of distinct brain regions. However, recent studies suggest there may be more complex interactions between hormones and chromosomes, and that circulating steroids can compensate for and/or mask underlying chromosomal effects. Moreover, the impact of pre vs post-pubertal sex hormone exposure on this sex hormone/sex chromosome interplay is not well understood. Thus, we used whole brain high-resolution ex-vivo MRI of intact and pre-pubertally gonadectomized 4CG mice to investigate two questions: 1) Do circulating steroids mask sex differences in brain anatomy driven by sex chromosome complement? And 2) What is the contribution of pre- versus post-pubertal hormones to sex-hormone-dependent differences in brain anatomy? We found evidence of both cooperative and compensatory interactions between sex chromosomes and sex hormones in several brain regions, but the interaction effects were of low magnitude. Additionally, most brain regions affected by sex hormones were sensitive to both pre- and post-pubertal hormones. This data provides further insight into the biological origins of sex differences in brain anatomy.


Asunto(s)
Encéfalo/anatomía & histología , Hormonas Esteroides Gonadales , Caracteres Sexuales , Cromosoma X , Cromosoma Y , Animales , Femenino , Genotipo , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Mutantes
14.
Dev Dyn ; 247(5): 779-787, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29396915

RESUMEN

BACKGROUND: The p63 gene is integral to the development of many body parts including limb, palate, teeth, and urogenital tract. Loss of p63 expression may alter developmental rate, which is crucial to normal morphogenesis. To validate a novel, unbiased embryo phenotyping software tool, we tested whether delayed development contributes to the pathological phenotype of a p63 mouse mutant (p63-/- ). We quantified dysmorphology in p63-/- embryos and tested for universal growth delay relative to wild-type (WT) embryos. Fixed embryos (n = 6; p63-/- ) aged day (E) 15.5 were micro-CT scanned and quantitatively analyzed using a digital WT atlas that defined volumetric differences between p63-/- and WT embryos. RESULTS: p63-/- embryos showed a growth delay of approximately 22 hr (0.9 days). Among the E15.5 mutants, overall size was closest to WT E14.6 mice but shape was closest to WT E14.0. The atlas clearly identified in p63-/- embryos malformations of epithelial derivatives including limbs, tail, urogenital structures, brain, face, and tooth. CONCLUSIONS: The software atlas technique described the p63-/- phenotype as a combination of developmental delay (i.e., heterochrony) and malformation (i.e., pathological shape; failed organogenesis). This study identifies for the first time global and local roles for p63 in prenatal growth and development. Developmental Dynamics 247:779-787, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Embrión de Mamíferos/metabolismo , Morfogénesis/fisiología , Fosfoproteínas/metabolismo , Transactivadores/metabolismo , Animales , Embrión de Mamíferos/citología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Ratones Noqueados , Morfogénesis/genética , Fosfoproteínas/genética , Transactivadores/genética
15.
NMR Biomed ; 30(11)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28686319

RESUMEN

Blood temperature is a key determinant of tissue temperature and can be altered under normal physiological states, such as exercise, in diseases such as stroke or iatrogenically in therapies which modulate tissue temperature, such as therapeutic hypothermia. Currently available methods for the measurement of arterial and venous temperatures are invasive and, for small animal models, are impractical. Here, we present a methodology for the measurement of intravascular and tissue temperature by magnetic resonance imaging (MRI) using the lanthanide agent TmDOTMA- (DOTMA, tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; Tm, thulium). The approach makes use of phase-sensitive imaging measurements, combined with spectrally selective excitation, to monitor the temperature-dependent shift in the resonance of proton nuclei associated with water and with methyl groups of TmDOTMA- . Measurements were first made in a flow phantom modelling diastolic blood flow in the mouse aorta or inferior vena cava (IVC) and imaged using 7-T preclinical MRI with a custom-built surface coil. Flowing and static fluid temperatures agreed to within 0.12°C for these experiments. Proof-of-concept experiments were also performed on three healthy adult mice, demonstrating temperature measurements in the aorta, IVC and kidney following a bolus injection of contrast agent. A small (0.7-1°C), but statistically significant, higher kidney temperature compared with the aorta (p = 0.002-0.007) and IVC (p = 0.003-0.03) was shown in all animals. These findings demonstrate the feasibility of the technique for in vivo applications and illustrate how the technique could be used to explore the relationship between blood and tissue temperature for a wide range of applications.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Termometría , Animales , Circulación Sanguínea , Ratones , Compuestos de Amonio Cuaternario , Temperatura
16.
Brain Struct Funct ; 221(2): 997-1016, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25445841

RESUMEN

Males and females exhibit several differences in brain structure and function. To examine the basis for these sex differences, we investigated the influences of sex hormones and sex chromosomes on brain structure and function in mice. We used the Four Core Genotype (4CG) mice, which can generate both male and female mice with XX or XY sex chromosome complement, allowing the decoupling of sex chromosomes from hormonal milieu. To examine whole brain structure, high-resolution ex vivo MRI was performed, and to assess differences in cognitive function, mice were trained on a radial arm maze. Voxel-wise and volumetric analyses of MRI data uncovered a striking independence of hormonal versus chromosomal influences in 30 sexually dimorphic brain regions. For example, the bed nucleus of the stria terminalis and the parieto-temporal lobe of the cerebral cortex displayed steroid-dependence while the cerebellar cortex, corpus callosum, and olfactory bulbs were influenced by sex chromosomes. Spatial learning and memory demonstrated strict hormone-dependency with no apparent influence of sex chromosomes. Understanding the influences of chromosomes and hormones on brain structure and function is important for understanding sex differences in brain structure and function, an endeavor that has eventual implications for understanding sex biases observed in the prevalence of psychiatric disorders.


Asunto(s)
Encéfalo/fisiología , Cromosomas Sexuales/fisiología , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Genotipo , Hormonas Esteroides Gonadales/metabolismo , Imagen por Resonancia Magnética , Masculino , Ratones , Caracteres Sexuales , Factores Sexuales , Navegación Espacial
17.
Development ; 142(20): 3583-91, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26487781

RESUMEN

After more than a century of research, the mouse remains the gold-standard model system, for it recapitulates human development and disease and is quickly and highly tractable to genetic manipulations. Fundamental to the power and success of using a mouse model is the ability to stage embryonic mouse development accurately. Past staging systems were limited by the technologies of the day, such that only surface features, visible with a light microscope, could be recognized and used to define stages. With the advent of high-throughput 3D imaging tools that capture embryo morphology in microscopic detail, we now present the first 4D atlas staging system for mouse embryonic development using optical projection tomography and image registration methods. By tracking 3D trajectories of every anatomical point in the mouse embryo from E11.5 to E14.0, we established the first 4D atlas compiled from ex vivo 3D mouse embryo reference images. The resulting 4D atlas comprises 51 interpolated 3D images in this gestational range, resulting in a temporal resolution of 72 min. From this 4D atlas, any mouse embryo image can be subsequently compared and staged at the global, voxel and/or structural level. Assigning an embryonic stage to each point in anatomy allows for unprecedented quantitative analysis of developmental asynchrony among different anatomical structures in the same mouse embryo. This comprehensive developmental data set offers developmental biologists a new, powerful staging system that can identify and compare differences in developmental timing in wild-type embryos and shows promise for localizing deviations in mutant development.


Asunto(s)
Embrión de Mamíferos/anatomía & histología , Regulación del Desarrollo de la Expresión Génica , Animales , Automatización , Desarrollo Embrionario , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional/métodos , Ratones , Fenotipo , Programas Informáticos , Factores de Tiempo , Tomografía Óptica/métodos
18.
Neuroimage ; 83: 593-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23831531

RESUMEN

Recent human and rodent brain imaging studies have shown that the shape of the brain can be changed by experience. These mesoscopic alterations in neuroanatomy are hypothesized to be driven by changes at the level of neuronal processes. To examine whether the shape of the brain changes rapidly, we used MRI to examine changes in the volume of the hippocampus across the 4-6 day estrous cycle in the female mouse. It is well known that changing steroid levels across the cycle influence dendritic spine maturation and alter synapse density in the hippocampus; our results show that the estrous cycle is associated with approximately 2-3% changes in hippocampal volume as seen by high-resolution ex-vivo MRI. Changes in hippocampal volume are, moreover, associated with a switch between hippocampal and striatal based navigation strategies in solving the dual choice T-maze in the same mice. A second experiment, using in-vivo MRI, suggests that these changes in hippocampal volume can occur over a 24 hour period. In summary, we show that the brain is highly plastic at a mesoscopic level of resolution detectable by MRI, that volumetric increases and decreases in hippocampal volume follow previously established patterns of changes in neuropil, and that these changes in volume predict changes in cognition.


Asunto(s)
Ciclo Estral/fisiología , Hipocampo/anatomía & histología , Hipocampo/fisiología , Aprendizaje por Laberinto/fisiología , Plasticidad Neuronal/fisiología , Animales , Cognición , Femenino , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Factores de Tiempo
19.
PLoS One ; 8(12): e84321, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24386367

RESUMEN

The International Mouse Phenotyping Consortium has been established to conduct large-scale phenotyping of the approximately 23,000 single-gene knockout mice generated by the International Knockout Mouse Consortium to investigate the role of each gene in the mouse genome. Of the generated mouse lines, 30% are predicted to be embryonic lethal, requiring the implementation of imaging techniques and analysis tools specific to late gestation mouse embryo phenotyping. A well-adopted technique combines the use of iodinated contrast solutions and micro-computed tomography imaging. This simple iodine immersion technique provides superior soft-tissue contrast enhancement, however, the hypertonic nature of iodine promotes dehydration causing moderate to severe tissue deformation. Here, we combine the stabilizing properties of a hydrogel mesh with the enhanced contrast properties of iodine. The protocol promotes cross linking of tissue through formaldehyde fixation and the linking of hydrogel monomers to biomolecules. As a result, the hydrogel supports tissue structure and preserves its conformation taking advantage of iodine-enhanced soft tissue contrast to produce high quality mouse embryo images with minimal tissue distortion. Hydrogel stabilization substantially reduces intersample anatomical variation of mature mouse embryos subjected to iodine preparation protocols. A 20% and 50% reduction in intersample variation of normalized brain and lung volume is achieved through hydrogel stabilization, as well as a 20% reduction in variation in overall embryo anatomy as measured through image registration methods. This increases the sensitivity of computer automated analysis to reveal significant anatomical differences between mutant and wild-type mice.


Asunto(s)
Embrión de Mamíferos/citología , Embrión de Mamíferos/diagnóstico por imagen , Yodo/metabolismo , Fenotipo , Coloración y Etiquetado , Conservación de Tejido/métodos , Microtomografía por Rayos X , Animales , Artefactos , Imagenología Tridimensional , Ratones
20.
Neuroimage ; 60(2): 933-9, 2012 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-22305951

RESUMEN

In fixed mouse brain magnetic resonance images, a high prevalence of fixation artifacts have been observed. Of more than 1700 images of fixed brains acquired at our laboratory, fixation artifacts were present in approximately 30%. In this study, two of these artifacts are described and their causes are identified. A hyperintense rim around the brain is observed when using perfusates reconstituted from powder and delivered at a high flow rate. It is proposed that these perfusion conditions cause blockage of the capillary beds and an increase in pressure that ruptures the vessels, resulting in a blister of liquid below the dura mater. Secondly, gray-white matter contrast inversion is observed when too short a fixation time or too low a concentration of fixative is used, resulting in inadequate fixation. The deleterious consequences of these artifacts for quantitative data analysis are discussed, and precautions for their prevention are provided.


Asunto(s)
Artefactos , Encéfalo/anatomía & histología , Imagen por Resonancia Magnética , Fijación del Tejido/métodos , Animales , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...