Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecol Appl ; 31(1): e2218, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32799393

RESUMEN

Springs ecosystems are globally abundant, geomorphologically diverse, and bio-culturally productive, but are highly imperiled by anthropogenic activities. More than a century of scientific discussion about the wide array of ecohydrological factors influencing springs has been informative, but has yielded little agreement on their classification. This lack of agreement has contributed to the global neglect and degradation of springs ecosystems by the public, scientific, and management communities. Here we review the historical literature on springs classification variables, concluding that site-specific source geomorphology remains the most diagnostic approach. We present a conceptual springs ecosystem model that clarifies the central role of geomorphology in springs ecosystem development, function, and typology. We present an illustrated dichotomous key to terrestrial (non-marine) springs ecosystem types and subtypes, and describe those types. We identify representative reference sites, although data limitations presently preclude selection of continentally or globally representative reference springs of each type. We tested the classification key using data from 244 randomly selected springs of 13 types that were inventoried in western North America. The dichotomous key correctly identified springs type in 87.5% of the cases, with discrepancies primarily due to differentiation of primary vs. secondary typology, and insufficient inventory team training. Using that information, we identified sources of confusion and clarified the key. Among the types that required more detailed explanation were hypocrenes, springs in which groundwater is expressed through phreatophytic vegetation. Overall, springs biodiversity and ecosystem complexity are due, in part, to the co-occurrence of multiple intra-springs microhabitats. We describe microhabitats that are commonly associated with different springs types, reporting at least 13 microhabitats, each of which can support discrete biotic assemblages. Interdisciplinary agreement on basic classification is needed to enhance scientific understanding and stewardship of springs ecosystems, the loss and degradation of which constitute a global conservation crisis.


Asunto(s)
Biodiversidad , Ecosistema , América del Norte
3.
Ecol Appl ; 28(6): 1459-1472, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29939455

RESUMEN

Climate change and wildfire are interacting to drive vegetation change and potentially reduce water quantity and quality in the southwestern United States, Forest restoration is a management approach that could mitigate some of these negative outcomes. However, little information exists on how restoration combined with climate change might influence hydrology across large forest landscapes that incorporate multiple vegetation types and complex fire regimes. We combined spatially explicit vegetation and fire modeling with statistical water and sediment yield models for a large forested landscape (335,000 ha) on the Kaibab Plateau in northern Arizona, USA. Our objective was to assess the impacts of climate change and forest restoration on the future fire regime, forest vegetation, and watershed outputs. Our model results predict that the combination of climate change and high-severity fire will drive forest turnover, biomass declines, and compositional change in future forests. Restoration treatments may reduce the area burned in high-severity fires and reduce conversions from forested to non-forested conditions. Even though mid-elevation forests are the targets of restoration, the treatments are expected to delay the decline of high-elevation spruce-fir, aspen, and mixed conifer forests by reducing the occurrence of high-severity fires that may spread across ecoregions. We estimate that climate-induced vegetation changes will result in annual runoff declines of up to 10%, while restoration reduced or reversed this decline. The hydrologic model suggests that mid-elevation forests, which are the targets of restoration treatments, provide around 80% of runoff in this system and the conservation of mid- to high-elevation forests types provides the greatest benefit in terms of water conservation. We also predict that restoration treatments will conserve water quality by reducing patches of high-severity fire that are associated with high sediment yield. Restoration treatments are a management strategy that may reduce undesirable outcomes for multiple ecosystem services.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Bosques , Modelos Teóricos , Ciclo Hidrológico , Incendios Forestales , Arizona , Agricultura Forestal , Sedimentos Geológicos
4.
Ground Water ; 55(1): 100-109, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27439144

RESUMEN

The recharge location for many springs is unknown because they can be sourced from proximal, shallow, atmospheric sources or long-traveled, deep, regional aquifers. The stable isotope (18 O and 2 H) geochemistry of springs water can provide cost-effective indications of relative flow path distance without the expense of drilling boreholes, conducting geophysical studies, or building groundwater flow models. Locally sourced springs generally have an isotopic signature similar to local precipitation for that region and elevation. Springs with a very different isotopic composition than local meteoric inputs likely have non-local recharge, representing a regional source. We tested this local vs. regional flow derived hypothesis with data from a new, large springs isotopic database from studies across Western North America in Arizona, Nevada, and Alberta. The combination of location-specific precipitation data with stable isotopic groundwater data provides an effective method for flow path determination at springs. We found springs in Arizona issue from a mix of regional and local recharge sources. These springs have a weak elevation trend across 1588 m of elevation where higher elevation springs are only slightly more depleted than low elevation springs with a δ18 O variation of 5.9‰. Springs sampled in Nevada showed a strong elevation-isotope relationship with high-elevation sites discharging depleted waters and lower elevation springs issuing enriched waters; only a 2.6‰ difference exists in 18 O values over an elevation range of more than 1500 m. Alberta's springs are mostly sourced from local flow systems and show a moderate elevation trend of 1200 m, but the largest range in δ18 O, 7.1‰.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Alberta , Arizona , Isótopos , Nevada , América del Norte , Isótopos de Oxígeno
5.
Ground Water ; 53(2): 207-16, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24665998

RESUMEN

The purpose of this study was to develop an interpretive groundwater-flow model to assess the impacts that planned forest restoration treatments and anticipated climate change will have on large regional, deep (>400 m), semi-arid aquifers. Simulations were conducted to examine how tree basal area reductions impact groundwater recharge from historic conditions to 2099. Novel spatial analyses were conducted to determine areas and rates of potential increases in groundwater recharge. Changes in recharge were applied to the model by identifying zones of basal area reduction from planned forest restoration treatments and applying recharge-change factors to these zones. Over a 10-year period of forest restoration treatment, a 2.8% increase in recharge to one adjacent groundwater basin (the Verde Valley sub-basin) was estimated, compared to conditions that existed from 2000 to 2005. However, this increase in recharge was assumed to quickly decline after treatment due to regrowth of vegetation and forest underbrush and their associated increased evapotranspiration. Furthermore, simulated increases in groundwater recharge were masked by decreases in water levels, stream baseflow, and groundwater storage resulting from surface water diversions and groundwater pumping. These results indicate that there is an imbalance between water supply and demand in this regional, semi-arid aquifer. Current water management practices may not be sustainable into the far future and comprehensive action should be taken to minimize this water budget imbalance.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Bosques , Agua Subterránea , Arizona , Predicción , Modelos Teóricos , Lluvia , Árboles , Movimientos del Agua
6.
Ground Water ; 44(5): 630-41, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16961484

RESUMEN

Springs along the south rim of the Grand Canyon, Arizona, are important ecological and cultural resources in Grand Canyon National Park and are discharge points for regional and local aquifers of the Coconino Plateau. This study evaluated the applicability of electrical resistance (ER) sensors for measuring diffuse, low-stage (<1.0 cm) intermittent and ephemeral flow in the steep, rocky spring-fed tributaries of the south rim. ER sensors were used to conduct a baseline survey of spring flow timing at eight sites in three spring-fed tributaries in Grand Canyon. Sensors were attached to a nearly vertical rock wall at a spring outlet and were installed in alluvial and bedrock channels. Spring flow timing data inferred by the ER sensors were consistent with observations during site visits, with flow events recorded with collocated streamflow gauging stations and with local precipitation gauges. ER sensors were able to distinguish the presence of flow along nearly vertical rock surfaces with flow depths between 0.3 and 1.0 cm. Laboratory experiments confirmed the ability of the sensors to monitor the timing of diffuse flow on impervious surfaces. A comparison of flow patterns along the stream reaches and at springs identified the timing and location of perennial and intermittent flow, and periods of increased evapotranspiration.


Asunto(s)
Agua Dulce/análisis , Geología/instrumentación , Movimientos del Agua , Arizona , Recolección de Datos , Impedancia Eléctrica , Geografía , Geología/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA