Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Contam Hydrol ; 259: 104261, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37925812

RESUMEN

Electrokinetic techniques employ direct current electric fields to enhance the transport of amendments in low permeability porous media and have been demonstrated effective for in situ remediation of both organic contaminants and heavy metals. The application of electric potential gradients give rise to coupled chemical, hydraulic and electric fluxes, which are at the basis of the main transport mechanisms: electromigration and electroosmosis. Previous research has highlighted the significant impacts of charge interactions and fluid composition, including temperature-dependent properties such as electrolyte conductivity and density, on these transport phenomena. However, current models of electrokinetic applications often assume isothermal conditions and overlook the production of heat resulting from Joule heating. This study provides a detailed model-based investigation, systematically exploring the effects of temperature on electrokinetic conservative and reactive transport in porous media. By incorporating temperature-dependent material properties and progressively investigating the impact of temperature on each transport mechanism, we analyze the effects of temperature variations in both 1D and 2D systems. The study reveals how temperature dynamically influences the physical, chemical and electrostatic processes controlling electrokinetic transport. A temperature increase results in a higher speed of amendments delivery by both electromigration and electroosmosis and increases the kinetics of degradation reactions. The simulations also reveal a feedback mechanism in which higher aqueous conductivity results in increased Joule heating, leading to a faster temperature rise and, subsequently, to higher electrolyte conductivity. Finally, we estimate the electric energy requirements of the system at varying temperatures and show how these changes impact the rate of contaminant removal.


Asunto(s)
Electricidad , Calor , Temperatura , Porosidad , Electrólitos
2.
J Contam Hydrol ; 251: 104102, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36372631

RESUMEN

The use of electrokinetics (EK) has great potential to deliver reactants in impervious porous media, thus overcoming some of the challenges in the remediation of contaminants trapped in low-permeability zones. In this work we experimentally investigate electrokinetic transport in heterogeneous porous media consisting of a sandy matrix with a target clay inclusion. We demonstrate the efficient EK-delivery of permanganate in the target clay zone (transport velocity 0.3-0.5 m day-1) and its reactivity with Methylene Blue, a positively charged contaminant trapped within the inclusion. The delivery method was optimized using a KH2PO4/K2HPO4 buffer to attenuate the effect of electrolysis reactions in the electrode chambers, thus mitigating the propagation of pH fronts and preventing the phenomenon of permanganate stalling. The experiments showed that the buffer electrical conductivity greatly impacts the potential gradient in the heterogeneous porous medium with implications on the observed rates of electrokinetic transport (variation up to 40%). The reactive experiments provided direct evidence of the permanganate penetration within the clay and of its capability to degrade the target immobilized contaminant. The experimental results were analyzed using a process-based model, elucidating the governing transport mechanisms and highlighting the effect of different mass transfer processes on conservative and reactive electrokinetic transport.


Asunto(s)
Restauración y Remediación Ambiental , Contaminantes del Suelo , Arcilla , Compuestos de Manganeso , Óxidos
3.
Water Res ; 213: 118161, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35152137

RESUMEN

Electrokinetic techniques represent a valuable approach to enhance solute transport, reactant delivery and contaminant degradation in complex environmental matrices, such as contaminated soil and groundwater, and have a great potential for the remediation of many organic and inorganic pollutants. This study investigates the complex interplay between the key electrokinetic transport mechanisms, electromigration and electroosmosis, in physically heterogeneous porous media and its impact on tracer distribution, reactant mixing and degradation efficiency. We perform experiments in a multidimensional setup, considering different types of heterogeneities, injected tracers and reactants, as well as background electrolyte pore water with different chemical composition and pH. We show that EK transport is significantly affected by the physical heterogeneities, due to the interaction between electrokinetic and hydraulic processes, and by the pore water chemistry that plays a key role on the magnitude and spatial distribution of electroosmotic fluxes. The latter affect the overall transport of charged and non-charged species, including the migration velocity of injected plumes, their spatial patterns, spreading and mixing with the background groundwater, and the extent of degradation and the spatio-temporal evolution of reactive zones in the heterogeneous porous media. Process-based numerical modeling allowed us to interpret the experimental observations and to disentangle the coupled effects of physical, chemical and electrostatic processes in the multidimensional, heterogeneous setups. Besides elucidating the mechanisms controlling electrokinetic transport, the results of this study have also important implications for practical field implementation of EK approaches in intrinsically heterogeneous subsurface systems.

4.
J Contam Hydrol ; 244: 103933, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34872016

RESUMEN

The application of electrokinetic techniques in porous media has great potential to enhance mass transfer rates and, thus, to mobilize contaminants and effectively deliver reactants and amendments. However, the transport mechanisms induced by the application of an external electric field are complex and entail the coupling of physical, chemical and electrostatic processes. In this study we focus on electromigration and we provide experimental evidence of the impact of compound-specific properties, such as the aqueous diffusivity and the valence of charged species, on the macroscopic electrokinetic transport. We performed a series of multidimensional experiments considering the displacement of three different tracer plumes (i.e., permanganate, allura red and new coccine) in different background electrolyte solutions. The outcomes of the experiments clearly show that both the compound-specific diffusivity and the charge of the injected and resident ions impact the transport of the selected color tracer plumes, whose evolution was monitored with image analysis. The investigated experimental scenarios led to distinct plume behavior characterized by different mass distribution, average displacement velocities, longitudinal and lateral plume spreading, shape of the invading and receding fronts, as well as dilution of the injected solutes. A numerical simulator, based on the Nernst-Planck-Poisson equations and on aqueous speciation reactions in the pore water, allowed us to quantitatively interpret the experimental results, to capture the observed patterns of plume evolution, and to illuminate the coupling between the governing physico-chemical mechanisms and the controlling role of small scale compound-specific and electrostatic properties. Finally, the model was also extended to a typical configuration of in situ electrokinetic remediation of contaminated groundwater to show the impact of such mechanisms at larger scale.


Asunto(s)
Agua Subterránea , Porosidad , Agua , Movimientos del Agua
5.
Sci Adv ; 7(18)2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33931456

RESUMEN

Metals are currently almost exclusively extracted from their ore via physical excavation. This energy-intensive process dictates that metal mining remains among the foremost CO2 emitters and mine waste is the single largest waste form by mass. We propose a new approach, electrokinetic in situ leaching (EK-ISL), and demonstrate its applicability for a Cu-bearing sulfidic porphyry ore. In laboratory-scale experiments, Cu recovery was rapid (up to 57 weight % after 94 days) despite low ore hydraulic conductivity (permeability = 6.1 mD; porosity = 10.6%). Multiphysics numerical model simulations confirm the feasibility of EK-ISL at the field scale. This new approach to mining is therefore poised to spearhead a new paradigm of metal recovery from currently inaccessible ore bodies with a markedly reduced environmental footprint.

6.
Environ Sci Technol ; 55(1): 719-729, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33295762

RESUMEN

Electrokinetics in porous media entails complex transport processes occurring upon the establishment of electric potential gradients, with a wide spectrum of environmental applications ranging from remediation of contaminated sites to biotechnology. The resulting electric forces cause the movement of pore water ions in opposite directions, leading to charge interactions that can affect the distribution of charged species in the domain. Here, we demonstrate that changes in chemical conditions, such as the concentration of a background electrolyte in the pore water of a saturated porous medium, exert a key control on the macroscopic transport of charged tracers and reactants. The difference in concentration between the background electrolyte and an injected solute can limit or enhance the reactant delivery, cause nonintuitive patterns of concentration distribution, and ultimately control mixing and degradation kinetics. With nonreactive and reactive electrokinetic transport experiments combined with process-based modeling, we show that microscopic charge interactions in the pore water play a crucial role on the transport of injected plumes and on the mechanisms and rate of both physical and chemical processes at larger, macroscopic scales. Our results have important implications on electrokinetic transport in porous media and may greatly impact injection and delivery strategies in a wide range of applications, including in situ remediation of soil and groundwater.


Asunto(s)
Restauración y Remediación Ambiental , Agua Subterránea , Contaminantes del Suelo , Porosidad , Suelo , Contaminantes del Suelo/análisis , Agua
7.
J Hazard Mater ; 397: 122787, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32388097

RESUMEN

This study presents a process-based modeling analysis of electrokinetic-enhanced bioremediation (EK-Bio) to illuminate the complex interactions between physical, electrostatic and biogeochemical processes occurring during the application of this remediation technique. The features of the proposed model include: (i) multidimensional electrokinetic transport in saturated porous media by electromigration and electroosmosis, (ii) charge interactions, (iii) degradation kinetics, (iv) microbial populations dynamics of indigenous and specialized exogenous degraders, (v) mass transfer limitations, and (vi) geochemical reactions. A scenario modeling investigation is presented, which was inspired by an EK-Bio pilot application conducted in a clayey aquitard at the Skuldelev site (Denmark) contaminated by chlorinated ethenes. Lactate and specialized degraders are delivered under conservative and reactive transport conditions. In the considered setup, transport of lactate using electrokinetics results in more than fourfold increase in the distribution efficiency with respect to a diffusion-only scenario. Moreover, EK transport by electromigration and electroosmosis yields fluxes at least two orders of magnitude larger than diffusive fluxes. Quantitative metrics are also defined and used to assess the amendment distribution and the enhanced contaminant biodegradation in the different conservative and reactive transport scenarios.


Asunto(s)
Restauración y Remediación Ambiental , Biodegradación Ambiental , Arcilla , Etilenos
8.
J Contam Hydrol ; 229: 103567, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31780056

RESUMEN

The potential of electrokinetic remediation technologies (EKR) for the removal of different contaminants from subsurface porous media has been increasingly recognized. Despite electrokinetic applications have shown promising results, quantitative understanding of such systems is still challenging due to the complex interplay between physical transport processes, electrostatic interactions, and geochemical reactions. In this study, we perform a model-based analysis of electrokinetic transport in saturated porous media. We investigate the effects of: (i) Coulombic interactions between ions in the system mobilized by electromigration, (ii) reaction kinetics on the overall removal efficiency of a non-charged organic contaminant, and (iii) dimensionality and different electrode configurations. The results show that such effects play a major role on the performance of electrokinetic systems. The simulations illuminate the importance of microscopic processes, such as electrostatic interactions and ion-specific diffusivities, and their non-intuitive macroscopic impact on the delivery of charged amendments and on the efficiency of contaminant removal. The insights of this study are valuable to improve and optimize the design and the operational strategies of electrokinetic remediation systems.


Asunto(s)
Restauración y Remediación Ambiental , Contaminantes del Suelo , Cinética , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...