Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 20(4): e3001615, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35476669

RESUMEN

Understanding the regulatory interactions that control gene expression during the development of novel tissues is a key goal of evolutionary developmental biology. Here, we show that Mbnl3 has undergone a striking process of evolutionary specialization in eutherian mammals resulting in the emergence of a novel placental function for the gene. Mbnl3 belongs to a family of RNA-binding proteins whose members regulate multiple aspects of RNA metabolism. We find that, in eutherians, while both Mbnl3 and its paralog Mbnl2 are strongly expressed in placenta, Mbnl3 expression has been lost from nonplacental tissues in association with the evolution of a novel promoter. Moreover, Mbnl3 has undergone accelerated protein sequence evolution leading to changes in its RNA-binding specificities and cellular localization. While Mbnl2 and Mbnl3 share partially redundant roles in regulating alternative splicing, polyadenylation site usage and, in turn, placenta maturation, Mbnl3 has also acquired novel biological functions. Specifically, Mbnl3 knockout (M3KO) alone results in increased placental growth associated with higher Myc expression. Furthermore, Mbnl3 loss increases fetal resource allocation during limiting conditions, suggesting that location of Mbnl3 on the X chromosome has led to its role in limiting placental growth, favoring the maternal side of the parental genetic conflict.


Asunto(s)
Placenta , Proteínas de Unión al ARN , Empalme Alternativo/genética , Animales , Euterios/genética , Femenino , Placenta/metabolismo , Embarazo , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
Nat Commun ; 10(1): 4269, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31537794

RESUMEN

Embryonic development yields many different cell types in response to just a few families of inductive signals. The property of signal-receiving cells that determines how they respond to inductive signals is known as competence, and it differs in different cell types. Here, we explore the ways in which maternal factors modify chromatin to specify initial competence in the frog Xenopus tropicalis. We identify early-engaged regulatory DNA sequences, and infer from them critical activators of the zygotic genome. Of these, we show that the pioneering activity of the maternal pluripotency factors Pou5f3 and Sox3 determines competence for germ layer formation by extensively remodelling compacted chromatin before the onset of inductive signalling. This remodelling includes the opening and marking of thousands of regulatory elements, extensive chromatin looping, and the co-recruitment of signal-mediating transcription factors. Our work identifies significant developmental principles that inform our understanding of how pluripotent stem cells interpret inductive signals.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Proteínas de Homeodominio/genética , Células Madre Pluripotentes/citología , Factores de Transcripción SOXB1/genética , Factores de Transcripción/genética , Proteínas de Xenopus/genética , Xenopus/embriología , Animales , Diferenciación Celular/genética , Cromatina/metabolismo , Desarrollo Embrionario/genética , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica/genética , Estratos Germinativos/crecimiento & desarrollo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Xenopus/genética
4.
Dev Cell ; 44(5): 597-610.e10, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29478923

RESUMEN

Antisense morpholino oligomers (MOs) have been indispensable tools for developmental biologists to transiently knock down (KD) genes rather than to knock them out (KO). Here we report on the implications of genetic KO versus MO-mediated KD of the mesoderm-specifying Brachyury paralogs in the frog Xenopus tropicalis. While both KO and KD embryos fail to activate the same core gene regulatory network, resulting in virtually identical morphological defects, embryos injected with control or target MOs also show a systemic GC content-dependent immune response and many off-target splicing defects. Optimization of MO dosage and increasing incubation temperatures can mitigate, but not eliminate, these MO side effects, which are consistent with the high affinity measured between MO and off-target sequence in vitro. We conclude that while MOs can be useful to profile loss-of-function phenotypes at a molecular level, careful attention must be paid to their immunogenic and off-target side effects.


Asunto(s)
Empalme Alternativo/efectos de los fármacos , Embrión no Mamífero/inmunología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Morfolinos/farmacología , Oligonucleótidos Antisentido/farmacología , Proteínas de Xenopus/genética , Xenopus laevis/inmunología , Animales , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Mesodermo/citología , Mesodermo/inmunología , Mesodermo/metabolismo , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo
5.
Genes Dev ; 28(17): 1873-8, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25184675

RESUMEN

Mammalian primed pluripotent stem cells have been shown to be highly susceptible to cell death stimuli due to their low apoptotic threshold, but how this threshold is regulated remains largely unknown. Here we identify microRNA (miRNA)-mediated regulation as a key mechanism controlling apoptosis in the post-implantation epiblast. Moreover, we found that three miRNA families, miR-20, miR-92, and miR-302, control the mitochondrial apoptotic machinery by fine-tuning the levels of expression of the proapoptotic protein BIM. These families therefore represent an essential buffer needed to maintain cell survival in stem cells that are primed for not only differentiation but also cell death.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Animales , Proteína 11 Similar a Bcl2 , Supervivencia Celular/genética , Células Cultivadas , Perfilación de la Expresión Génica , Ratones , Mitocondrias/metabolismo , Células Madre Pluripotentes/citología
6.
Cell Cycle ; 10(4): 584-91, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21293181

RESUMEN

At the time of implantation the mouse embryo is composed of three tissues the epiblast, trophectoderm and primitive endoderm. As development progresses the epiblast goes on to form the foetus whilst the trophectoderm and primitive endoderm give rise to extra-embryonic structures with important roles in embryo patterning and nutrition. Dramatic changes in gene expression occur during early embryo development and these require regulation at different levels. miRNAs are small non coding RNAs that have emerged over the last decade as important post-transcriptional repressors of gene expression. The roles played by miRNAs during early mammalian development are only starting to be elucidated. In order to gain insight into the function of miRNAs in the different lineages of the early mouse embryo we have analysed in depth the phenotype of embryos and extra-embryonic stem cells mutant for the miRNA maturation protein Dicer. This study revealed that miRNAs are involved in regulating cell signaling and homeostasis in the early embryo. Specifically, we identified a role for miRNAs in regulating the Erk signaling pathway in the extra-embryonic endoderm, cell cycle progression in extra-embryonic tissues and apoptosis in the epiblast.


Asunto(s)
Embrión de Mamíferos/fisiología , Quinasas MAP Reguladas por Señal Extracelular/genética , Sistema de Señalización de MAP Quinasas/genética , MicroARNs/genética , MicroARNs/metabolismo , Animales , Apoptosis/genética , Ciclo Celular , Diferenciación Celular , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Implantación del Embrión , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Células Madre Embrionarias/metabolismo , Endodermo/fisiología , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/fisiología , Homeostasis , Ratones , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
7.
Dev Cell ; 19(2): 207-19, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20708584

RESUMEN

The two first cell fate decisions taken in the mammalian embryo generate three distinct cell lineages: one embryonic, the epiblast, and two extraembryonic, the trophoblast and primitive endoderm. miRNAs are essential for early development, but it is not known if they are utilized in the same way in these three lineages. We find that in the pluripotent epiblast they inhibit apoptosis by blocking the expression of the proapoptotic protein Bcl2l11 (Bim) but play little role in the initiation of gastrulation. In contrast, in the trophectoderm, miRNAs maintain the trophoblast stem cell compartment by directly inhibiting expression of Cdkn1a (p21) and Cdkn1c (p57), and in the primitive endoderm, they prevent differentiation by maintaining ERK1/2 phosphorylation through blocking the expression of Mapk inhibitors. Therefore, we show that there are fundamental differences in how stem cells maintain their developmental potential in embryonic and extraembryonic tissues through miRNAs.


Asunto(s)
Embrión de Mamíferos/citología , Embrión de Mamíferos/fisiología , MicroARNs/metabolismo , Células Madre/fisiología , Animales , Apoptosis/fisiología , Tipificación del Cuerpo , Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Línea Celular , Linaje de la Célula , Proliferación Celular , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Perfilación de la Expresión Génica , Estratos Germinativos/anatomía & histología , Estratos Germinativos/fisiología , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Noqueados , MicroARNs/genética , Ribonucleasa III , Células Madre/citología
8.
Cell ; 141(7): 1195-207, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20603000

RESUMEN

Although specific microRNAs (miRNAs) can be upregulated in cancer, global miRNA downregulation is a common trait of human malignancies. The mechanisms of this phenomenon and the advantages it affords remain poorly understood. Here we identify a microRNA family, miR-103/107, that attenuates miRNA biosynthesis by targeting Dicer, a key component of the miRNA processing machinery. In human breast cancer, high levels of miR-103/107 are associated with metastasis and poor outcome. Functionally, miR-103/107 confer migratory capacities in vitro and empower metastatic dissemination of otherwise nonaggressive cells in vivo. Inhibition of miR-103/107 opposes migration and metastasis of malignant cells. At the cellular level, a key event fostered by miR-103/107 is induction of epithelial-to-mesenchymal transition (EMT), attained by downregulating miR-200 levels. These findings suggest a new pathway by which Dicer inhibition drifts epithelial cancer toward a less-differentiated, mesenchymal fate to foster metastasis.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Metástasis de la Neoplasia/genética , Ribonucleasa III/genética , Animales , Neoplasias de la Mama/diagnóstico , Línea Celular Tumoral , Movimiento Celular , Regulación hacia Abajo , Femenino , Humanos , Ratones , Pronóstico
9.
Epigenetics Chromatin ; 3: 1, 2010 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-20157423

RESUMEN

BACKGROUND: During early mouse development, two extra-embryonic lineages form alongside the future embryo: the trophectoderm (TE) and the primitive endoderm (PrE). Epigenetic changes known to take place during these early stages include changes in DNA methylation and modified histones, as well as dynamic changes in gene expression. RESULTS: In order to understand the role and extent of chromatin-based changes for lineage commitment within the embryo, we examined the epigenetic profiles of mouse embryonic stem (ES), trophectoderm stem (TS) and extra-embryonic endoderm (XEN) stem cell lines that were derived from the inner cell mass (ICM), TE and PrE, respectively. As an initial indicator of the chromatin state, we assessed the replication timing of a cohort of genes in each cell type, based on data that expressed genes and acetylated chromatin domains, generally, replicate early in S-phase, whereas some silent genes, hypoacetylated or condensed chromatin tend to replicate later. We found that many lineage-specific genes replicate early in ES, TS and XEN cells, which was consistent with a broadly 'accessible' chromatin that was reported previously for multiple ES cell lines. Close inspection of these profiles revealed differences between ES, TS and XEN cells that were consistent with their differing lineage affiliations and developmental potential. A comparative analysis of modified histones at the promoters of individual genes showed that in TS and ES cells many lineage-specific regulator genes are co-marked with modifications associated with active (H4ac, H3K4me2, H3K9ac) and repressive (H3K27me3) chromatin. However, in XEN cells several of these genes were marked solely by repressive modifications (such as H3K27me3, H4K20me3). Consistent with TS and XEN having a restricted developmental potential, we show that these cells selectively reprogramme somatic cells to induce the de novo expression of genes associated with extraembryonic differentiation. CONCLUSIONS: These data provide evidence that the diversification of defined embryonic and extra-embryonic lineages is accompanied by chromatin remodelling at specific loci. Stem cell lines from the ICM, TE and PrE can each dominantly reprogramme somatic cells but reset gene expression differently, reflecting their separate lineage identities and increasingly restricted developmental potentials.

10.
Epigenetics Chromatin ; 1(1): 2, 2008 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-19014663

RESUMEN

BACKGROUND: X chromosome inactivation is the mechanism used in mammals to achieve dosage compensation of X-linked genes in XX females relative to XY males. Chromosome silencing is triggered in cis by expression of the non-coding RNA Xist. As such, correct regulation of the Xist gene promoter is required to establish appropriate X chromosome activity both in males and females. Studies to date have demonstrated co-transcription of an antisense RNA Tsix and low-level sense transcription prior to onset of X inactivation. The balance of sense and antisense RNA is important in determining the probability that a given Xist allele will be expressed, termed the X inactivation choice, when X inactivation commences. RESULTS: Here we investigate further the mechanism of Xist promoter regulation. We demonstrate that both sense and antisense transcription modulate Xist promoter DNA methylation in undifferentiated embryonic stem (ES) cells, suggesting a possible mechanistic basis for influencing X chromosome choice. Given the involvement of sense and antisense RNAs in promoter methylation, we investigate a possible role for the RNA interference (RNAi) pathway. We show that the Xist promoter is hypomethylated in ES cells deficient for the essential RNAi enzyme Dicer, but that this effect is probably a secondary consequence of reduced levels of de novo DNA methyltransferases in these cells. Consistent with this we find that Dicer-deficient XY and XX embryos show appropriate Xist expression patterns, indicating that Xist gene regulation has not been perturbed. CONCLUSION: We conclude that Xist promoter methylation prior to the onset of random X chromosome inactivation is influenced by relative levels of sense and antisense transcription but that this probably occurs independent of the RNAi pathway. We discuss the implications for this data in terms of understanding Xist gene regulation and X chromosome choice in random X chromosome inactivation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA