Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 458: 131915, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37413800

RESUMEN

The extensive use of nanomaterials, including titanium dioxide nanoparticles (TiO2 NPs), raises concerns about their persistence in ecosystems. Protecting aquatic ecosystems and ensuring healthy and safe aquaculture products requires the assessment of the potential impacts of NPs on organisms. Here, we study the effects of a sublethal concentration of citrate-coated TiO2 NPs of two different primary sizes over time in flatfish turbot, Scophthalmus maximus (Linnaeus, 1758). Bioaccumulation, histology and gene expression were assessed in the liver to address morphophysiological responses to citrate-coated TiO2 NPs. Our analyses demonstrated a variable abundance of lipid droplets (LDs) in hepatocytes dependent on TiO2 NPs size, an increase in turbot exposed to smaller TiO2 NPs and a depletion with larger TiO2 NPs. The expression patterns of genes related to oxidative and immune responses and lipid metabolism (nrf2, nfκb1, and cpt1a) were dependent on the presence of TiO2 NPs and time of exposure supporting the variance in hepatic LDs distribution over time with the different NPs. The citrate coating is proposed as the likely catalyst for such effects. Thus, our findings highlight the need to scrutinize the risks associated with exposure to NPs with distinct properties, such as primary size, coatings, and crystalline forms, in aquatic organisms.


Asunto(s)
Peces Planos , Nanopartículas del Metal , Nanopartículas , Animales , Estrés Oxidativo , Ecosistema , Nanopartículas/toxicidad , Nanopartículas/química , Hígado/metabolismo , Titanio/química , Ácido Cítrico/metabolismo , Ingestión de Alimentos , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química
2.
Nanomaterials (Basel) ; 13(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37513123

RESUMEN

Antimony tin oxide (Sb2O5/SnO2) is effective in the absorption of infrared radiation for applications, such as skylights. As a nanoparticle (NP), it can be incorporated into films or sheets providing infrared radiation attenuation while allowing for a transparent final product. The acute toxicity exerted by commercial Sb2O5/SnO2 (ATO) NPs was studied in adults and embryos of zebrafish (Danio rerio). Our results suggest that these NPs do not induce an acute toxicity in zebrafish, either adults or embryos. However, some sub-lethal parameters were altered: heart rate and spontaneous movements. Finally, the possible bioaccumulation of these NPs in the aquacultured marine mussel Mytilus sp. was studied. A quantitative analysis was performed using single particle inductively coupled plasma mass spectrometry (sp-ICP-MS). The results indicated that, despite being scarce (2.31 × 106 ± 9.05 × 105 NPs/g), there is some accumulation of the ATO NPs in the mussel. In conclusion, commercial ATO NPs seem to be quite innocuous to aquatic organisms; however, the fact that some of the developmental parameters in zebrafish embryos are altered should be considered for further investigation. More in-depth analysis of these NPs transformations in the digestive tract of humans is needed to assess whether their accumulation in mussels presents an actual risk to humans.

3.
Nat Commun ; 13(1): 4685, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948564

RESUMEN

The protein kinase mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth and proliferation, supporting anabolic reactions and inhibiting catabolic pathways like autophagy. Its hyperactivation is a frequent event in cancer promoting tumor cell proliferation. Several intracellular membrane-associated mTORC1 pools have been identified, linking its function to distinct subcellular localizations. Here, we characterize the N-terminal kinase-like protein SCYL1 as a Golgi-localized target through which mTORC1 controls organelle distribution and extracellular vesicle secretion in breast cancer cells. Under growth conditions, SCYL1 is phosphorylated by mTORC1 on Ser754, supporting Golgi localization. Upon mTORC1 inhibition, Ser754 dephosphorylation leads to SCYL1 displacement to endosomes. Peripheral, dephosphorylated SCYL1 causes Golgi enlargement, redistribution of early and late endosomes and increased extracellular vesicle release. Thus, the mTORC1-controlled phosphorylation status of SCYL1 is an important determinant regulating subcellular distribution and function of endolysosomal compartments. It may also explain the pathophysiology underlying human genetic diseases such as CALFAN syndrome, which is caused by loss-of-function of SCYL1.


Asunto(s)
Aparato de Golgi , Lisosomas , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas de Unión al ADN/metabolismo , Aparato de Golgi/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosforilación
4.
Chemosphere ; 308(Pt 1): 136110, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36007739

RESUMEN

Titanium dioxide (TiO2) and silver (Ag) NPs are among the most used engineered inorganic nanoparticles (NPs); however, their potential effects to marine demersal fish species, are not fully understood. Therefore, this study aimed to assess the proteomic alterations induced by sub-lethal concentrations citrate-coated 25 nm ("P25") TiO2 or polyvinylpyrrolidone (PVP) coated 15 nm Ag NPs to turbot, Scophthalmus maximus. Juvenile fish were exposed to the NPs through daily feeding for 14 days. The tested concentrations were 0, 0.75 or 1.5 mg of each NPs per kg of fish per day. The determination of NPs, Titanium and Ag levels (sp-ICP-MS/ICP-MS) and histological alterations (Transmission Electron Microscopy) supported proteomic analysis performed in the liver and kidney. Proteomic sample preparation procedure (SP3) was followed by LC-MS/MS. Label-free MS quantification methods were employed to assess differences in protein expression. Functional analysis was performed using STRING web-tool. KEGG Gene Ontology suggested terms were discussed and potential biomarkers of exposure were proposed. Overall, data shows that liver accumulated more elements than kidney, presented more histological alterations (lipid droplets counts and size) and proteomic alterations. The Differentially Expressed Proteins (DEPs) were higher in Ag NPs trial. The functional analysis revealed that both NPs caused enrichment of proteins related to generic processes (metabolic pathways). Ag NPs also affected protein synthesis and nucleic acid transcription, among other processes. Proteins related to thyroid hormone transport (Serpina7) and calcium ion binding (FAT2) were suggested as biomarkers of TiO2 NPs in liver. For Ag NPs, in kidney (and at a lower degree in liver) proteins related with metabolic activity, metabolism of exogenous substances and oxidative stress (e.g.: NADH dehydrogenase and Cytochrome P450) were suggested as potential biomarkers. Data suggests adverse effects in turbot after medium/long-term exposures and the need for additional studies to validate specific biological applications of these NPs.


Asunto(s)
Peces Planos , Nanopartículas del Metal , Ácidos Nucleicos , Animales , Calcio , Cromatografía Liquida , Citratos , Nanopartículas del Metal/química , NADH Deshidrogenasa , Povidona/química , Proteómica , Plata/química , Espectrometría de Masas en Tándem , Hormonas Tiroideas , Titanio/química
5.
Nanoscale Adv ; 4(2): 387-392, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35178499

RESUMEN

Control over the synthesis of anisotropic nanoparticles is crucial as slight differences in their size, shape, sharpness, or the number of tips in the case of gold nanostars, has an inordinate influence on their properties and functionality for future applications. Herein, we show that the supplier and purity of polyvinylpyrrolidone (PVP) can significantly alter the synthesis of gold nanostars, demonstrating that impurities, not PVP itself, are the main factor responsible for star-like shape formation. We demonstrate that in the presence of pure PVP and N,N-dimethylformamide, the use of hydrazine leads to the formation of branched nanoparticles. This synthetic approach opens the door to solving issues associated with the use of commercial PVP during the synthesis of gold nanostars.

6.
Adv Healthc Mater ; 10(6): e2001667, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33434386

RESUMEN

Cellular surface recognition and behavior are driven by a host of physical and chemical features which have been exploited to influence particle-cell interactions. Mechanical and topographical cues define the physical milieu which plays an important role in defining a range of cellular activities such as material recognition, adhesion, and migration through cytoskeletal organization and signaling. In order to elucidate the effect of local mechanical and topographical features generated by the adsorption of particles to an underlying surface on primary human monocyte-derived macrophages (MDM), a series of poly(N-isopropylacrylamide) (pNIPAM) particles with differing rigidity are self-assembled to form a defined particle-decorated surface. Assembly of particle-decorated surfaces is facilitated by modification of the underlying glass to possess a positive charge through functionalization using 3-aminopropyltriethoxysilane (APTES) or coating with poly(L-lysine) (PLL). MDMs are noted to preferentially remove particles with higher degrees of crosslinking (stiffer) than those with lower degrees of crosslinking (softer). Alterations to the surface density of particles enabled a greater area of the particle-decorated surface to be cleared. Uniquely, the impact of particle adsorption is evinced to have a direct impact on topographical recognition of the surface, suggesting a novel approach for controllably affecting cell-surface recognition and response.


Asunto(s)
Vidrio , Macrófagos , Adsorción , Humanos , Tamaño de la Partícula , Propiedades de Superficie
7.
Nanomaterials (Basel) ; 9(12)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835823

RESUMEN

The overt hazard of carbon nanotubes (CNTs) is often assessed using in vitro methods, but determining a dose-response relationship is still a challenge due to the analytical difficulty of quantifying the dose delivered to cells. An approach to accurately quantify CNT doses for submerged in vitro adherent cell culture systems using UV-VIS-near-infrared (NIR) spectroscopy is provided here. Two types of multi-walled CNTs (MWCNTs), Mitsui-7 and Nanocyl, which are dispersed in protein rich cell culture media, are studied as tested materials. Post 48 h of CNT incubation, the cellular fractions are subjected to microwave-assisted acid digestion/oxidation treatment, which eliminates biological matrix interference and improves CNT colloidal stability. The retrieved oxidized CNTs are analyzed and quantified using UV-VIS-NIR spectroscopy. In vitro imaging and quantification data in the presence of human lung epithelial cells (A549) confirm that up to 85% of Mitsui-7 and 48% for Nanocyl sediment interact (either through internalization or adherence) with cells during the 48 h of incubation. This finding is further confirmed using a sedimentation approach to estimate the delivered dose by measuring the depletion profile of the CNTs.

8.
ACS Nano ; 13(7): 7759-7770, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31276366

RESUMEN

The long-term fate of biomedically relevant nanoparticles (NPs) at the single cell level after uptake is not fully understood yet. We report that lysosomal exocytosis of NPs is not a mechanism to reduce the particle load. Biopersistent NPs such as nonporous silica and gold remain in cells for a prolonged time. The only reduction of the intracellular NP number is observed via cell division, e.g., mitosis. Additionally, NP distribution after cell division is observed to be asymmetrical, likely due to the inhomogeneous location and distribution of the NP-loaded intracellular vesicles in the mother cells. These findings are important for biomedical and hazard studies as the NP load per cell can vary significantly. Furthermore, we highlight the possibility of biopersistent NP accumulation over time within the mononuclear phagocyte system.


Asunto(s)
Oro/química , Mitosis , Nanopartículas/química , Dióxido de Silicio/química , Animales , Células Cultivadas , Exocitosis , Lisosomas/química , Ratones , Imagen Óptica , Oxidación-Reducción , Tamaño de la Partícula , Porosidad , Dióxido de Silicio/síntesis química , Propiedades de Superficie
9.
Sci Rep ; 9(1): 7938, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138841

RESUMEN

As the commercial use of synthetic amorphous silica nanomaterials (SiO2-NPs) increases, their effects on the environment and human health have still not been explored in detail. An often-insurmountable obstacle for SiO2-NP fate and hazard research is the challenging analytics of solid particulate silica species, which involves toxic and corrosive hydrofluoric acid (HF). We therefore developed and validated a set of simple hydrofluoric acid-free sample preparation methods for the quantification of amorphous SiO2 micro- and nanoparticles. To circumvent HF, we dissolved the SiO2-NPs by base-catalyzed hydrolysis at room temperature or under microwave irradiation using potassium hydroxide, replacing the stabilizing fluoride ions with OH-, and exploiting the stability of the orthosilicic acid monomer under a strongly basic pH. Inductively coupled plasma - optical emission spectroscopy (ICP-OES) or a colorimetric assay served to quantify silicon. The lowest KOH: SiO2 molar ratio to effectively dissolve and quantify SiO2-NPs was 1.2 for colloidal Stöber SiO2-NPs at a pH >12. Fumed SiO2-NPs (Aerosil®) or food grade SiO2 (E551) containing SiO2-NPs were degradable at higher KOH: SiO2 ratios >8000. Thus, hydrofluoric acid-free SiO2-NP digestion protocols based on KOH present an effective (recoveries of >84%), less hazardous, and easy to implement alternative to current methods.

10.
Sci Rep ; 9(1): 900, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30696847

RESUMEN

As a highly interdisciplinary field, working with nanoparticles in a biomedical context requires a robust understanding of soft matter physics, colloidal behaviors, nano-characterization methods, biology, and bio-nano interactions. When reporting results, it can be easy to overlook simple, seemingly trivial experimental details. In this context, we set out to understand how in vitro technique, specifically the way we administer particles in 2D culture, can influence experimental outcomes. Gold nanoparticles coated with poly(vinylpyrrolidone) were added to J774A.1 mouse monocyte/macrophage cultures as either a concentrated bolus, a bolus then mixed via aspiration, or pre-mixed in cell culture media. Particle-cell interaction was monitored via inductively coupled plasma-optical emission spectroscopy and we found that particles administered in a concentrated dose interacted more with cells compared to the pre-mixed administration method. Spectroscopy studies reveal that the initial formation of the protein corona upon introduction to cell culture media may be responsible for the differences in particle-cell interaction. Modeling of particle deposition using the in vitro sedimentation, diffusion and dosimetry model helped to clarify what particle phenomena may be occurring at the cellular interface. We found that particle administration method in vitro has an effect on particle-cell interactions (i.e. cellular adsorption and uptake). Initial introduction of particles in to complex biological media has a lasting effect on the formation of the protein corona, which in turn mediates particle-cell interaction. It is of note that a minor detail, the way in which we administer particles in cell culture, can have a significant effect on what we observe regarding particle interactions in vitro.


Asunto(s)
Técnicas de Cultivo de Célula , Nanopartículas , Transporte Biológico , Técnicas de Cultivo de Célula/métodos , Oro/química , Humanos , Macrófagos/metabolismo , Nanopartículas del Metal/química , Microscopía Fluorescente , Nanopartículas/administración & dosificación , Nanopartículas/química
11.
Adv Mater ; 30(52): e1806181, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30370701

RESUMEN

Wound healing assays are extensively used to study tissue repair mechanisms; they are typically performed by means of physical (i.e., mechanical, electrical, or optical) detachment of the cells in order to create an open space in which live cells can lodge. Herein, an advanced system based on extensive photobleaching-induced apoptosis; providing a powerful tool to understand the repair response of lung epithelial tissue, consisting of a small injury area where apoptotic cells are still intact, is developed. Notably, the importance of epithelial mechanics and the presence of macrophages during the repair can be understood. The findings reveal that individual epithelial cells are able to clear the apoptotic cells by applying a pushing force, whilst macrophages actively phagocytose the dead cells to create an empty space. It is further shown that this repair mechanism is hampered when carbon nanotubes (CNTs) are introduced: formation of aberrant (i.e., thickening) F-actins, maturation of focal adhesion, and increase in traction force leading to retardation in cell migration are observed. The results provide a mechanistic view of how CNTs can interfere with lung repair.


Asunto(s)
Células Epiteliales/fisiología , Lesión Pulmonar/patología , Lesión Pulmonar/fisiopatología , Macrófagos/fisiología , Nanotubos de Carbono/efectos adversos , Cicatrización de Heridas/fisiología , Actinas/metabolismo , Apoptosis/fisiología , Línea Celular , Movimiento Celular , Técnicas de Cocultivo , Simulación por Computador , Adhesiones Focales/patología , Adhesiones Focales/fisiología , Humanos , Rayos Láser , Pulmón/patología , Pulmón/fisiopatología , Modelos Biológicos , Método de Montecarlo , Fagocitosis/fisiología
12.
Small ; 14(46): e1802088, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30198074

RESUMEN

Amino groups presented on the surface of nanoparticles are well-known to be a predominant factor in the formation of the protein corona and subsequent cellular uptake. However, the molecular mechanism underpinning this relationship is poorly defined. This study investigates how amine type and density affect the protein corona and cellular association of gold nanoparticles with cells in vitro. Four specific poly(vinyl alcohol-co-N-vinylamine) copolymers are synthesized containing primary, secondary, or tertiary amines. Particle cellular association (i.e., cellular uptake and surface adsorption), as well as protein corona composition, are then investigated. It is found that the protein corona (as a consequence of "amine bulkiness") and amine density are both important in dictating cellular association. By evaluating the nanoparticle surface chemistry and the protein fingerprint, proteins that are significant in mediating particle-cell association are identified. In particular, primary amines, when exposed on the polymer side chain, are strongly correlated with the presence of alpha-2-HS-glycoprotein, and promote nanoparticle cellular association.


Asunto(s)
Aminas/química , Nanopartículas del Metal/química , Proteínas/química , Oro/química , Mapeo Peptídico , Corona de Proteínas/química
13.
ACS Nano ; 7(9): 7630-9, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23987911

RESUMEN

We investigated the acoustic vibrations of gold nanobipyramids and bimetallic gold-silver core-shell bipyramids, synthesized by wet chemistry techniques, using a high-sensitivity pump-probe femtosecond setup. Three modes were observed and characterized in the gold core particles for lengths varying from 49 to 170 nm and diameters varying from 20 to 40 nm. The two strongest modes have been associated with the fundamental extensional and its first harmonic, and a weak mode has been associated with the fundamental radial mode, in very good agreement with numerical simulations. We then derived linear laws linking the periods to the dimensions both experimentally and numerically. To go further, we investigated the evolution of these modes under silver deposition on gold core bipyramids. We studied the evolution of the periods of the extensional modes, which were found to be in good qualitative agreement with numerical simulations. Moreover, we observed a strong enhancement of the radial mode amplitude when silver is deposited: we are typically sensitive to the deposition of 40 attograms of silver per gold core particle. This opens up possible applications in the field of mass sensing, where metallic nanobalances have an important role to play, taking advantage of their robustness and versatility.

14.
Langmuir ; 28(24): 9027-33, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22369067

RESUMEN

The spectral characteristics (wavelength and line width) and the optical extinction cross-section of the longitudinal localized surface plasmon resonance (LSPR) of individual gold nanobipyramids have been quantitatively measured using the spatial modulation spectroscopy technique. The morphology of the same individual nanoparticles has been determined by transmission electron microscopy (TEM). The experimental results are thus interpreted with a numerical model using the TEM measured sizes of the particles as an input, and either including the substrate or assuming a mean homogeneous environment. Results are compared to those obtained for individual nanorods and also show the importance of the local environment of the particle on the detailed description of its spectral position and extinction amplitude.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Nanotubos/química , Resonancia por Plasmón de Superficie , Tamaño de la Partícula , Propiedades de Superficie
15.
Langmuir ; 24(17): 9675-81, 2008 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-18412379

RESUMEN

Goethite (FeOOH) rods were used as templates for growing gold nanotubes with a length of a few hundred nanometers and an aspect ratio between 3 and 4. Successful uniform growth required surface modification, followed by the attachment of small Au seeds and one-step seeded growth using formaldehyde as a reducing agent, as previously reported for the growth of Au shells on silica spheres and hematite spindles. The thickness and surface roughness of the obtained shells could be adjusted by simply varying the concentration ratio between seeds (modified goethite rods) and growth reagents (HAuCl 4 and formaldehyde). The morphology of the synthesized gold nanotubes was thoroughly characterized by TEM, SEM, and AFM/MFM. The resulting gold nanotubes display well-defined plasmon resonances, with a strong longitudinal mode centered around ca. 1400 nm and a broad band in the visible resulting from the overlap of a transverse mode and a multipolar mode, as was found from theoretical modeling using the boundary element method, which provides reasonable agreement with the experimental results.

16.
J Colloid Interface Sci ; 310(1): 297-301, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17306291

RESUMEN

The layer-by-layer (LBL) assembly method, combined with the seeded growth technique, have been used to deposit gold shells on the surface of hematite (alpha-Fe(2)O(3)) spindles. While the LBL method yields dense coatings of preformed Au nanoparticles, when AuCl(-)(4) ions are further reduced by a mild reducing agent, thicker, rough nanostructured shells can be grown. The deposition process was monitored by TEM and UV-visible spectroscopy, demonstrating a gradual change in the optical features of the colloids as the surface is more densely covered. The particles so-prepared can find useful applications in cancer therapy and as SERS substrates. Additionally, we show that Au nanorods can be assembled on hematite spindles, providing a flexible way to tune the optical properties of the resulting composite colloids.


Asunto(s)
Compuestos Férricos/química , Oro/química , Nanopartículas del Metal/química , Microscopía Electrónica de Transmisión de Rastreo , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...