Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
2.
Sci Total Environ ; 880: 163258, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37019241

RESUMEN

Despite a theoretical link between plastic and plasticiser occurrence in the terrestrial environment, there are few empirical studies of the relationship between these contaminants in soils. We carried out a field study to assess the co-occurrence of plastic waste, and legacy and emerging plasticisers in UK soils (n = 19) from various land uses (woodlands, urban roadsides, urban parklands, landfill-associated). Surface plastics and soil microplastics were quantified and characterised using ATR-FTIR and µ-FTIR. Eight legacy (phthalate) and three emerging (adipate, citrate, trimellitate) plasticisers were quantified using GC-MS. Surface plastics were found at higher prevalence at landfill-associated and urban roadside sites, with levels significantly (2 orders of magnitude) greater than in woodlands. Microplastics were detected in landfill-associated (mean 12.3 particles g-1 dw), urban roadside (17.3 particles g-1 dw) and urban parkland (15.7 particles g-1 dw) soils, but not in woodland soils. The most commonly detected polymers were polyethene, polypropene and polystyrene. Mean ∑plasticiser concentration in urban roadside soils (3111 ng g-1 dw) was significantly higher than in woodlands (134 ng g-1 dw). No significant difference was found between landfill-associated (318 ng g-1 dw) and urban parkland (193 ng g-1 dw) soils and woodlands. Di-n-butyl phthalate (94.7% detection frequency) and the emerging plasticiser trioctyl trimellitate (89.5%) were the most commonly detected plasticisers, with diethylhexyl phthalate (493 ng g-1 dw) and di-iso-decyl phthalate (96.7 ng g-1 dw) present at the highest concentrations. ∑plasticiser concentrations were significantly correlated with surface plastic (R2 = 0.23), but not with soil microplastic concentrations. Whilst plastic litter seems a fundamental source of plasticisers in soils, mechanisms such as airborne transport from source areas may be as important. Based on the data from this study, phthalates remain the dominant plasticisers in soils, but emerging plasticisers are already widespread, as reflected by their presence in all land uses studied.

3.
Ecotoxicol Environ Saf ; 251: 114504, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36634482

RESUMEN

Lepidopteran species can be both pests and also beneficial pollinators for agricultural crops. However, despite these important roles, the effects of pesticides on this diverse taxa are relatively understudied. To facilitate the assessment of pesticides and other chemical hazards on this taxa, we present a novel bioassay capable of testing chemical sensitivity to lepidopteran larvae through dietary exposure. We used Mamestra brassicae caterpillars as a model lepidopteran and tested their sensitivity for the organophosphate insecticide chlorpyrifos. We exposed larvae to an artificial diet spiked with chlorpyrifos and monitored survival over time, as well as weight change over a 96-hour exposure period. To test the repeatability and reliability of the developed bioassay, the experiment was repeated three times. The survival in time data collected enabled analysis with the General Unified Threshold of Survival (GUTS) model, recently recognized by EFSA as a ready-to-use tool for regulatory purposes. The GUTS modelling was used to derive a set of relevant toxicokinetic and toxicodynamic parameters relating to the larval response to exposure over time. We found that across the three repeats studies there was no more than a threefold difference in LC50 values (13.1, 18.7 and 8.1 mg/Kg) at 48 h and fourfold difference at 96 h, highlighting the repeatability of the bioassay. We also highlighted the potential of the method to observe sub-lethal effects such as changes in weight. Finally, we discuss the applications of this new bioassay method to chemical risk assessments and its potential for use in other scenarios, such as mixture or pulsed exposure testing.


Asunto(s)
Cloropirifos , Mariposas Nocturnas , Plaguicidas , Animales , Cloropirifos/toxicidad , Reproducibilidad de los Resultados , Plaguicidas/toxicidad , Larva , Bioensayo
4.
Ecotoxicol Environ Saf ; 250: 114499, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36610295

RESUMEN

The Dynamic Energy Budget theory (DEB) enables ecotoxicologists to model the effects of chemical stressors on organism life cycles through the coupling of toxicokinetic-toxicodynamic (TK-TD) models. While good progress has been made in the application of DEB-TKTD models for aquatic organisms, applications for soil fauna are scarce, due to the lack of dedicated experimental designs suitable for collecting the required time series effect data. Enchytraeids (Annelida: Clitellata) are model organisms in soil ecology and ecotoxicology. They are recognised as indicators of biological activity in soil, and chemical stress in terrestrial ecosystems. Despite this, the application of DEB-TKTD models to investigate the impact of chemicals has not yet been tested on this family. Here we assessed the impact of the pyrethroid insecticide cypermethrin on the life cycle of Enchytraeus crypticus. We developed an original experimental design to collect the data required for the calibration of a DEB-TKTD model for this species. E. crypticus presented a slow initial growth phase that has been successfully simulated with the addition of a size-dependent food limitation for juveniles in the DEB model. The DEB-TKTD model simulations successfully agreed with the data for all endpoints and treatments over time. The highlighted physiological mode of action (pMoA) for cypermethrin was an increase of the growth energy cost. The threshold for effects on survival was estimated at 73.14 mg kg- 1, and the threshold for effects on energy budget (i.e., sublethal effects) at 19.21 mg kg- 1. This study demonstrates that DEB-TKTD models can be successfully applied to E. crypticus as a representative soil species, and may improve the ecological risk assessment for terrestrial ecosystems, and our mechanistic understanding of chemical effects on non-target species.


Asunto(s)
Insecticidas , Oligoquetos , Piretrinas , Animales , Insecticidas/toxicidad , Proyectos de Investigación , Suelo , Ecosistema , Piretrinas/toxicidad , Estadios del Ciclo de Vida
5.
Life Sci Alliance ; 5(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35977843

RESUMEN

Here, we explore the high-altitude adaptions and acclimatisation of Aporrectodea caliginosa Population diversity is assessed through mitochondrial barcoding, identifying closely related populations across the island of Pico (Azores). We present the first megabase N50 assembly size (1.2 Mbp) genome for A. caliginosa High- and low-altitude populations were exposed experimentally to a range of oxygen and temperature conditions, simulating altitudinal conditions, and the transcriptomic responses explored. SNP densities are assessed to identify signatures of selective pressure and their link to differentially expressed genes. The high-altitude A. caliginosa population had lower differential expression and fewer co-expressed genes between conditions, indicating a more condition-refined epigenetic response. Genes identified as under adaptive pressure through Fst and nucleotide diversity in the high-altitude population clustered around the differentially expressed an upstream environmental response control gene, HMGB1. The high-altitude population of A. caliginosa indicated adaption and acclimatisation to high-altitude conditions and suggested resilience to extreme weather events. This mechanistic understanding could help offer a strategy in further identifying other species capable of maintaining soil fertility in extreme environments.


Asunto(s)
Altitud , Oligoquetos , Adaptación Fisiológica/genética , Animales , Genoma
6.
Sci Total Environ ; 843: 157048, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35779734

RESUMEN

The assessment of chemical mixture toxicity is one of the major challenges in ecotoxicology. Chemicals can interact, leading to more or less effects than expected, commonly named synergism and antagonism respectively. The classic ad hoc approach for the assessment of mixture effects is based on dose-response curves at a single time point, and is limited to identifying a mixture interaction but cannot provide predictions for untested exposure durations, nor for scenarios where exposure varies in time. We here propose a new approach using toxicokinetic-toxicodynamic modelling: The General Unified Threshold model of Survival (GUTS) framework, recently extended for mixture toxicity assessment. We designed a dedicated mechanistic interaction module coupled with the GUTS mixture model to i) identify interactions, ii) test hypotheses to identify which chemical is likely responsible for the interaction, and finally iii) simulate and predict the effect of synergistic and antagonistic mixtures. We tested the modelling approach experimentally with two species (Enchytraeus crypticus and Mamestra brassicae) exposed to different potentially synergistic mixtures (composed of: prochloraz, imidacloprid, cypermethrin, azoxystrobin, chlorothalonil, and chlorpyrifos). Furthermore, we also tested the model with previously published experimental data on two other species (Bombus terrestris and Daphnia magna) exposed to pesticide mixtures (clothianidin, propiconazole, dimethoate, imidacloprid and thiacloprid) found to be synergistic or antagonistic with the classic approach. The results showed an accurate simulation of synergistic and antagonistic effects for the different tested species and mixtures. This modelling approach can identify interactions accounting for the entire time of exposure, and not only at one time point as in the classic approach, and provides predictions of the mixture effect for untested mixture exposure scenarios, including those with time-variable mixture composition.


Asunto(s)
Cloropirifos , Insecticidas , Oligoquetos , Animales , Cloropirifos/toxicidad , Daphnia , Insecticidas/química , Toxicocinética
7.
Environ Toxicol Chem ; 41(9): 2124-2138, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35698918

RESUMEN

Gene expression-based biomarkers are regularly proposed as rapid, sensitive, and mechanistically informative tools to identify whether soil invertebrates experience adverse effects due to chemical exposure. However, before biomarkers could be deployed within diagnostic studies, systematic evidence of the robustness of such biomarkers to detect effects is needed. In our study, we present an approach for conducting a meta-analysis of the robustness of gene expression-based biomarkers in soil invertebrates. The approach was developed and trialed for two measurements of gene expression commonly proposed as biomarkers in soil ecotoxicology: earthworm metallothionein (MT) gene expression for metals and earthworm heat shock protein 70 (HSP70) gene expression for organic chemicals. We collected 294 unique gene expression data points from the literature and used linear mixed-effect models to assess concentration, exposure duration, and species effects on the quantified response. The meta-analysis showed that the expression of earthworm MT was strongly metal concentration dependent, stable over time and species independent. The metal concentration-dependent response was strongest for cadmium, indicating that this gene is a suitable biomarker for this metal. For copper, no clear concentration-dependent response of MT gene expression in earthworms was found, indicating MT is not a reliable biomarker for this metal. For HSP70, overall marginal up-regulation and lack of a concentration-dependent response indicated that this gene is not suitable as a biomarker for organic pollutant effects in earthworms. The present study demonstrates how meta-analysis can be used to assess the status of biomarkers. We encourage colleagues to apply this open-access approach to other biomarkers, as such quantitative assessment is a prerequisite to ensuring that the suitability and limitations of proposed biomarkers are known and stated. Environ Toxicol Chem 2022;41:2124-2138. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Biomarcadores/metabolismo , Ecotoxicología , Expresión Génica , Metalotioneína/genética , Metalotioneína/metabolismo , Metales/análisis , Suelo , Contaminantes del Suelo/análisis
8.
Genes (Basel) ; 13(5)2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35627155

RESUMEN

This study reports on the effects of long-term exposure to the metals arsenic (As), cadmium (Cd) and the polycyclic aromatic hydrocarbon fluoranthene on the survival, growth, development and DNA methylation status of the earthworm Lumbricus rubellus. Exposures to the three chemicals were conducted over their whole juvenile developmental period from egg to adult. Significant effects on one or more measured endpoints were found for all three chemicals. Arsenic had no effect on survival, but had a significant effect on growth rates at concentrations of 36 mg/kg or higher and also slowed the rate of maturation. Cadmium significantly reduced juvenile survival at 500 mg/kg, juvenile growth at 148 mg/kg and maturation rates at all tested concentrations. Fluoranthene had no effect on survival or the developmental period, but did significantly reduce growth rates at 800 mg/kg. Effects at these concentrations are consistent with the known effects of these three chemicals on earthworms from previous studies conducted mainly with Eisenia fetida. Both As and Cd had no effect on DNA methylation patterning in earthworms measured at the end of the exposure. Fluoranthene was shown, for the first time. to have an effect on a species' DNA methylation levels. These results suggest that apical phenotypic changes for As and Cd are not necessarily associated with changes in DNA methylation profiles. However, exposure to the organic chemical fluoranthene influenced DNA methylation patterns, suggesting wider remodelling of the epigenome for this chemical.


Asunto(s)
Arsénico , Oligoquetos , Contaminantes del Suelo , Animales , Arsénico/toxicidad , Cadmio/toxicidad , Metilación de ADN , Fluorenos , Oligoquetos/genética , Contaminantes del Suelo/toxicidad
9.
Environ Sci Technol ; 55(9): 6065-6075, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33848142

RESUMEN

To better understand nanoplastic effects, the potential for surface functionalization and dissolve organic matter eco-corona formation to modify the mechanisms of action and toxicity of different nanoplastics needs to be established. Here, we assess how different surface charges modifying functionalization (postive (+ve) aminated; neutral unfunctionalized; negative (-ve) carboxylated) altered the toxicity of 50 and 60 nm polystyrene nanoplastics to the nematode Caenorhabditis elegans. The potency for effects on survival, growth, and reproduction reduced in the order +ve aminated > neutral unfunctionalized ≫ -ve carboxylated with toxicity >60-fold higher for the +ve than -ve charged forms. Toxicokinetic-toxicodynamic modeling (DEBtox) showed that the charge-related potency was primarily linked to differences in effect thresholds and dose-associated damage parameters, rather than to toxicokinetic parameters. This suggests that surface functionalization may change the nature of nanoplastic interactions with membrane and organelles leading to variations in toxicity. Eco-corona formation reduced the toxicity of all nanoplastics indicating that organic molecule associations may passivate surfaces. Between particles, eco-corona interactions resulting in more equivalent effects; however, even despite these changes, the order of potency of the charged forms was retained. These results have important implications for the development of future grouping approaches.


Asunto(s)
Microplásticos , Nanopartículas , Poliestirenos , Animales , Caenorhabditis elegans , Microplásticos/toxicidad , Nanopartículas/toxicidad , Poliestirenos/toxicidad
10.
Environ Sci Technol ; 55(5): 3059-3069, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33559465

RESUMEN

Neonicotinoids are currently licensed for use in 120 countries, making accurate nontarget species sensitivity predictions critical. Unfortunately, such predictions are fraught with uncertainty, as sensitivity is extrapolated from only a few test species and neonicotinoid sensitivities can differ greatly between closely related taxa. Combining classical toxicology with de novo toxicogenomics could greatly improve sensitivity predictions and identify unexpectedly susceptible species. We show that there is a >30-fold differential species sensitivity (DSS) for the neonicotinoid imidacloprid between five earthworm species, a critical nontarget taxon. This variation could not be explained by differential toxicokinetics. Furthermore, comparing key motif expression in subunit genes of the classical nicotinic acetylcholine receptor (nAChR) target predicts only minor differences in the ligand binding domains (LBDs). In contrast, predicted dissimilarities in LBDs do occur in the highly expressed but nonclassical targets, acetylcholine binding proteins (AChBPs). Critically, the predicted AChBP divergence is capable of explaining DSS. We propose that high expression levels of putative nonsynaptic AChBPs with high imidacloprid affinities reduce imidacloprid binding to critical nAChRs involved in vital synaptic neurotransmission. This study provides a clear example of how pragmatic interrogation of key motif expression in complex multisubunit receptors can predict observed DSS, thereby informing sensitivity predictions for essential nontarget species.


Asunto(s)
Insecticidas , Receptores Nicotínicos , Animales , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Oligoquetos , Receptores Nicotínicos/genética , Toxicogenética
11.
Environ Sci Technol ; 55(4): 2430-2439, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33499591

RESUMEN

Current methods to assess the impact of chemical mixtures on organisms ignore the temporal dimension. The General Unified Threshold model for Survival (GUTS) provides a framework for deriving toxicokinetic-toxicodynamic (TKTD) models, which account for effects of toxicant exposure on survival in time. Starting from the classic assumptions of independent action and concentration addition, we derive equations for the GUTS reduced (GUTS-RED) model corresponding to these mixture toxicity concepts and go on to demonstrate their application. Using experimental binary mixture studies with Enchytraeus crypticus and previously published data for Daphnia magna and Apis mellifera, we assessed the predictive power of the extended GUTS-RED framework for mixture assessment. The extended models accurately predicted the mixture effect. The GUTS parameters on single exposure data, mixture model calibration, and predictive power analyses on mixture exposure data offer novel diagnostic tools to inform on the chemical mode of action, specifically whether a similar or dissimilar form of damage is caused by mixture components. Finally, observed deviations from model predictions can identify interactions, e.g., synergism or antagonism, between chemicals in the mixture, which are not accounted for by the models. TKTD models, such as GUTS-RED, thus offer a framework to implement new mechanistic knowledge in mixture hazard assessments.


Asunto(s)
Daphnia , Modelos Biológicos , Animales , Abejas , Calibración , Medición de Riesgo , Toxicocinética
12.
Integr Environ Assess Manag ; 17(2): 352-363, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32910508

RESUMEN

Earthworms are important ecosystem engineers, and assessment of the risk of plant protection products toward them is part of the European environmental risk assessment (ERA). In the current ERA scheme, exposure and effects are represented simplistically and are not well integrated, resulting in uncertainty when the results are applied to ecosystems. Modeling offers a powerful tool to integrate the effects observed in lower tier laboratory studies with the environmental conditions under which exposure is expected in the field. This paper provides a summary of the (In)Field Organism Risk modEling by coupling Soil Exposure and Effect (FORESEE) Workshop held 28-30 January 2020 in Düsseldorf, Germany. This workshop focused on toxicokinetic-toxicodynamic (TKTD) and population modeling of earthworms in the context of ERA. The goal was to bring together scientists from different stakeholder groups to discuss the current state of soil invertebrate modeling and to explore how earthworm modeling could be applied to risk assessments, in particular how the different model outputs can be used in the tiered ERA approach. In support of these goals, the workshop aimed at addressing the requirements and concerns of the different stakeholder groups to support further model development. The modeling approach included 4 submodules to cover the most relevant processes for earthworm risk assessment: environment, behavior (feeding, vertical movement), TKTD, and population. Four workgroups examined different aspects of the model with relevance for risk assessment, earthworm ecology, uptake routes, and cross-species extrapolation and model testing. Here, we present the perspectives of each workgroup and highlight how the collaborative effort of participants from multidisciplinary backgrounds helped to establish common ground. In addition, we provide a list of recommendations for how earthworm TKTD modeling could address some of the uncertainties in current risk assessments for plant protection products. Integr Environ Assess Manag 2021;17:352-363. © 2020 SETAC.


Asunto(s)
Oligoquetos , Plaguicidas , Animales , Ecosistema , Alemania , Humanos , Plaguicidas/toxicidad , Medición de Riesgo , Suelo
13.
Environ Pollut ; 267: 115633, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33254656

RESUMEN

Environmental pollution can disrupt the interactions between animals and their symbiotic bacteria, which can lead to adverse effects on the host even in the absence of direct chemical toxicity. It is therefore crucial to understand how environmental pollutants affect animal microbiomes, especially for those chemicals that are designed to target microbes. Here, we study the effects of two biocidal nanoparticles (NPs) (Ag and CuO) on the soil bacterial community and the resident gut microbiome of the earthworm Eisenia fetida over a 28-day period using metabarcoding techniques. Exposures to NPs were conducted following OECD test guidelines and effects on earthworm reproduction and juvenile biomass were additionally recorded in order to compare effects on the host to effects on microbiomes. By employing a full concentration series, we were able to link pollutants to microbiome effects in high resolution. Multivariate analysis, differential abundance analysis and species sensitivity distribution analysis showed that Ag-NPs are more toxic to soil bacteria than CuO-NPs. In contrast to the strong effects of CuO-NPs and Ag-NPs on the soil bacterial community, the earthworm gut microbiome is largely resilient to exposure to biocidal NPs. Despite this buffering effect, CuO-NPs did negatively affect the relative abundance of some earthworm symbionts, including 'Candidatus Lumbricincola'. Changes in the soil bacterial community and the earthworm microbiome occur at total copper concentrations often found or modelled to occur in agricultural fields, demonstrating that soil bacterial communities and individual taxa in the earthworm microbiome may be at risk from environmental copper exposure including in nanomaterial form.


Asunto(s)
Microbioma Gastrointestinal , Nanopartículas del Metal , Microbiota , Oligoquetos , Animales , Nanopartículas del Metal/toxicidad , Suelo
14.
Nat Nanotechnol ; 15(9): 731-742, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32807878

RESUMEN

Nanotechnology is identified as a key enabling technology due to its potential to contribute to economic growth and societal well-being across industrial sectors. Sustainable nanotechnology requires a scientifically based and proportionate risk governance structure to support innovation, including a robust framework for environmental risk assessment (ERA) that ideally builds on methods established for conventional chemicals to ensure alignment and avoid duplication. Exposure assessment developed as a tiered approach is equally beneficial to nano-specific ERA as for other classes of chemicals. Here we present the developing knowledge, practical considerations and key principles need to support exposure assessment for engineered nanomaterials for regulatory and research applications.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Nanoestructuras/química , Nanoestructuras/toxicidad , Nanotecnología/métodos , Medición de Riesgo/métodos , Disponibilidad Biológica , Exposición a Riesgos Ambientales/prevención & control , Humanos , Termodinámica
15.
Aquat Toxicol ; 225: 105543, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32585540

RESUMEN

Species sensitivity distributions (SSDs) are used in chemical safety assessments to derive predicted-no-effect-concentrations (PNECs) for substances with a sufficient amount of relevant and reliable ecotoxicity data available. For engineered nanomaterials (ENMs), ecotoxicity data are often compromised by poor reproducibility and the lack of nano-specific characterization needed describe an ENM under test exposure conditions. This may influence the outcome of SSD modelling and hence the regulatory decision-making. This study investigates how the outcome of SSD modelling is influenced by: 1) Selecting input data based on the nano-specific "nanoCRED" reliability criteria, 2) Direct SSD modelling avoiding extrapolation of data by including long-term/chronic NOECs only, and 3) Weighting data according to their nano-specific quality, the number of data available for each species, and the trophic level abundance in the ecosystem. Endpoints from freshwater ecotoxicity studies were collected for the representative nanomaterials NM-300 K (silver) and NM-105 (titanium dioxide), evaluated for regulatory reliability and scored according to the level of nano-specific characterization conducted. The compiled datasets are unique in exclusively dealing with representative ENMs showing minimal batch-to-batch variation. The majority of studies were evaluated as regulatory reliable, while the degree of nano-specific characterization varied greatly. The datasets for NM-300 K and NM-105 were used as input to the nano-weighted n-SSWD model, the probabilistic PSSD+, and the conventional SSD Generator by the US EPA. The conventional SSD generally yielded the most conservative, but least precise HC5 values, with 95 % confidence intervals up to 100-fold wider than the other models. The inclusion of regulatory reliable data only, had little effect on the HC5 generated by the conventional SSD and the PSSD+, whereas the n-SSWD estimated different HC5 values based on data segregated according to reliability, especially for NM-105. The n-SSWD weighting of data significantly affected the estimated HC5 values, however in different ways for the sub-datasets of NM-300 K and NM-105. For NM-300 K, the inclusion of NOECs only in the weighted n-SSWD yielded the most conservative HC5 of all datasets and models (a HC5 based on NOECs only could not be estimated for NM-105, due to limited number of data). Overall, the estimated HC5 values of all models are within a relatively limited concentration range of 25-100 ng Ag/L for NM-300 K and 1-15 µgTiO2/L for NM-105.


Asunto(s)
Nanoestructuras/toxicidad , Pruebas de Toxicidad/métodos , Contaminantes Químicos del Agua/toxicidad , Ecosistema , Agua Dulce/química , Reproducibilidad de los Resultados , Medición de Riesgo , Plata/toxicidad , Titanio/toxicidad
16.
Small ; 16(21): e2000598, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32363795

RESUMEN

The interaction of a living organism with external foreign agents is a central issue for its survival and adaptation to the environment. Nanosafety should be considered within this perspective, and it should be examined that how different organisms interact with engineered nanomaterials (NM) by either mounting a defensive response or by physiologically adapting to them. Herein, the interaction of NM with one of the major biological systems deputed to recognition of and response to foreign challenges, i.e., the immune system, is specifically addressed. The main focus is innate immunity, the only type of immunity in plants, invertebrates, and lower vertebrates, and that coexists with adaptive immunity in higher vertebrates. Because of their presence in the majority of eukaryotic living organisms, innate immune responses can be viewed in a comparative context. In the majority of cases, the interaction of NM with living organisms results in innate immune reactions that eliminate the possible danger with mechanisms that do not lead to damage. While in some cases such interaction may lead to pathological consequences, in some other cases beneficial effects can be identified.


Asunto(s)
Inmunidad Innata , Nanoestructuras , Medición de Riesgo , Inmunidad Adaptativa , Animales , Inmunidad Innata/efectos de los fármacos , Nanoestructuras/toxicidad , Medición de Riesgo/métodos
17.
Small ; 16(36): e2000618, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32402152

RESUMEN

In the environment, nanomaterials (NMs) are subject to chemical transformations, such as redox reactions, dissolution, coating degradation, and organic matter, protein, and macromolecule binding, and physical transformations including homo or heteroagglomeration. The combination of these reactions can result in NMs with differing characteristics progressing through a functional fate pathway that leads to the formation of transformed NM functional fate groups with shared properties. To establish the nature of such effects of transformation on NMs, four main types of studies are conducted: 1) chemical aging for transformation of pristine NMs; 2) manipulation of test media to change NM surface properties; 3) aging of pristine NMs water, sediment, or soil; 4) NM aging in waste streams and natural environments. From these studies a paradigm of aging effects on NM uptake and toxicity can be developed. Transformation, especially speciation changes, largely results in reduced potency. Further reactions at the surface resulting in processes, such as ecocorona formation and heteroagglomeration may additionally reduce NM potency. When NMs of differing potency transform and enter environments, common transformation reaction occurring in receiving system may act to reduce the variation in hazard between different initial NMs leading to similar actual hazard under realistic exposure conditions.


Asunto(s)
Células , Ambiente , Nanoestructuras , Animales , Bioacumulación , Biotransformación , Células/efectos de los fármacos , Células/metabolismo , Agua Dulce/química , Nanoestructuras/química , Nanoestructuras/toxicidad , Propiedades de Superficie , Factores de Tiempo
18.
J Environ Radioact ; 211: 105757, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29970267

RESUMEN

Single species laboratory tests and associated species sensitivity distributions (SSDs) that utilise the resulting data can make a key contribution to efforts to prospective hazard assessments for pesticides, biocides, metals and ionising radiation for research and regulatory risk assessment. An assumption that underlies the single species based toxicity testing approach when combined in SSD models is that the assessments of sensitivities to chemical and ionising radiation measured across a range of species in the laboratory can inform on the likely effects on communities present in the field. Potential issues with the validity of this assumption were already recognised by Van Straalen and Denneman (1989) in their landmark paper on the SSD methodology. In this work, they identified eight major factors that could potentially compromise the extrapolation of laboratory toxicity data to the field. Factors covered a range of issues related to differences in chemistry (e.g. bioavailability, mixtures); environmental conditions (optimal, variable), ecological (compensatory, time-scale) and population genetic structure (adaptation, meta-population dynamics). This paper outlines the evidence pertaining to the influence of these different factors on toxicity in the laboratory as compared to the field focussing especially on terrestrial ecosystems. Through radiological and ecotoxicological research, evidence of the influence of each factor on the translation of observed toxicity from the laboratory to field is available in all cases. The importance of some factors, such as differences in chemical bioavailability between laboratory tests and the field and the ubiquity of exposure to mixtures is clearly established and has some relevance to radiological protection. However, other factors such as the differences in test conditions (optimal vs sub-optimal) and the development of tolerance may be relevant on a case by case basis. When SSDs generated from laboratory tests have been used to predict chemical and ionising radiation effects in the field, results have indicated that they may often seem to under-predict impacts, although this may also be due to other factors such as the effects of other non-chemical stressors also affecting communities at polluted sites. A better understanding of the main factors affecting this extrapolation can help to reduce uncertainty during risk assessment.


Asunto(s)
Monitoreo de Radiación , Ecosistema , Estudios Prospectivos , Radiación Ionizante , Medición de Riesgo , Pruebas de Toxicidad , Contaminantes Químicos del Agua
19.
Ecotoxicol Environ Saf ; 188: 109882, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31698175

RESUMEN

Microplastics attract widespread attention, including for their potential to transport toxic chemicals in the form of plasticisers and associated hydrophobic organic chemicals, such as polybrominated diphenyl ethers (PBDEs). The aims of this study were to investigate how nylon (polyamide) microplastics may affect PBDE accumulation in snails, and the acute effects of nylon particles and PBDEs on survival, weight change and inherent microbiome diversity and community composition of the pond snail Lymnaea stagnalis. Snails were exposed for 96 h to BDEs-47, 99, 100 and 153 in the presence and absence of 1% w/w nylon microplastics in quartz sand sediment. No mortality was observed over the exposure period. Snails not exposed to microplastics lost significantly more weight compared to those exposed to microplastics. Increasing PBDE concentration in the sediment resulted in an increased PBDE body burden in the snails, however microplastics did not significantly influence total PBDE uptake. Based on individual congeners, uptake of BDE 47 by snails was significantly reduced in the presence of microplastics. The diversity and composition of the snail microbiome was not significantly altered by the presence of PBDEs nor by the microplastics, singly or combined. Significant effects on a few individual operational taxonomic units (OTUs) occurred when comparing the highest PBDE concentration with the control treatment, but in the absence of microplastics only. Overall within these acute experiments, only subtle effects on weight loss and slight microbiome alterations occurred. These results therefore highlight that L. stagnalis are resilient to acute exposures to microplastics and PBDEs, and that microplastics are unlikely to influence HOC accumulation or the microbiome of this species over short timescales.


Asunto(s)
Éteres Difenilos Halogenados/metabolismo , Lymnaea/efectos de los fármacos , Microbiota/efectos de los fármacos , Microplásticos/toxicidad , Contaminantes Químicos del Agua/metabolismo , Animales , Carga Corporal (Radioterapia) , Exposición a Riesgos Ambientales/análisis , Retardadores de Llama/análisis , Retardadores de Llama/metabolismo , Retardadores de Llama/toxicidad , Éteres Difenilos Halogenados/análisis , Éteres Difenilos Halogenados/toxicidad , Lymnaea/metabolismo , Lymnaea/microbiología , Nylons/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
20.
Environ Pollut ; 255(Pt 1): 113238, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31655460

RESUMEN

The effects of exposure to different levels of ionising radiation were assessed on the genetic, epigenetic and microbiome characteristics of the "hologenome" of earthworms collected at sites within the Chernobyl exclusion zone (CEZ). The earthworms Aporrectodea caliginosa (Savigny, 1826) and Octolasion lacteum (Örley, 1881) were the two species that were most frequently found at visited sites, however, only O. lacteum was present at sufficient number across different exposure levels to enable comparative hologenome analysis. The identification of morphotype O. lacteum as a probable single clade was established using a combination of mitochondrial (cytochrome oxidase I) and nuclear genome (Amplified Fragment Length Polymorphism (AFLP) using MspI loci). No clear site associated differences in population genetic structure was found between populations using the AFLP marker loci. Further, no relationship between ionising radiation exposure levels and the percentage of methylated loci or pattern of distribution of DNA methylation marks was found. Microbiome structure was clearly site dependent, with gut microbiome community structure and diversity being systematically associated with calculated site-specific earthworm dose rates. There was, however, also co-correlation between earthworm dose rates and other soil properties, notably soil pH; a property known to affect soil bacterial community structure. Such co-correlation means that it is not possible to attribute microbiome changes unequivocally to radionuclide exposure. A better understanding of the relationship between radionuclide exposure soil properties and their interactions on bacterial microbiome community response is, therefore, needed to establish whether these the observed microbiome changes are attributed directly to radiation exposure, other soil properties or to an interaction between multiple variables at sites within the CEZ.


Asunto(s)
Accidente Nuclear de Chernóbil , Microbiota/efectos de la radiación , Oligoquetos/fisiología , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Animales , Bacterias/efectos de los fármacos , Epigénesis Genética , Microbioma Gastrointestinal , Oligoquetos/efectos de los fármacos , Oligoquetos/microbiología , Oligoquetos/efectos de la radiación , Exposición a la Radiación , Monitoreo de Radiación , Radioisótopos , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...