Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 187(4): 962-980.e19, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309258

RESUMEN

Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.


Asunto(s)
Encéfalo , Microglía , Axones , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Macrófagos/fisiología , Microglía/patología , Morfogénesis
2.
Cell ; 172(3): 500-516.e16, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29275859

RESUMEN

Microglia are embryonically seeded macrophages that contribute to brain development, homeostasis, and pathologies. It is thus essential to decipher how microglial properties are temporally regulated by intrinsic and extrinsic factors, such as sexual identity and the microbiome. Here, we found that microglia undergo differentiation phases, discernable by transcriptomic signatures and chromatin accessibility landscapes, which can diverge in adult males and females. Remarkably, the absence of microbiome in germ-free mice had a time and sexually dimorphic impact both prenatally and postnatally: microglia were more profoundly perturbed in male embryos and female adults. Antibiotic treatment of adult mice triggered sexually biased microglial responses revealing both acute and long-term effects of microbiota depletion. Finally, human fetal microglia exhibited significant overlap with the murine transcriptomic signature. Our study shows that microglia respond to environmental challenges in a sex- and time-dependent manner from prenatal stages, with major implications for our understanding of microglial contributions to health and disease.


Asunto(s)
Vida Libre de Gérmenes , Microbiota , Microglía/citología , Efectos Tardíos de la Exposición Prenatal/microbiología , Transcriptoma , Animales , Encéfalo/citología , Encéfalo/embriología , Encéfalo/metabolismo , Diferenciación Celular , Células Cultivadas , Ensamble y Desensamble de Cromatina , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Embarazo , Factores Sexuales
3.
Front Neurosci ; 9: 248, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26236185

RESUMEN

Neocortex functioning relies on the formation of complex networks that begin to be assembled during embryogenesis by highly stereotyped processes of cell migration and axonal navigation. The guidance of cells and axons is driven by extracellular cues, released along by final targets or intermediate targets located along specific pathways. In particular, guidepost cells, originally described in the grasshopper, are considered discrete, specialized cell populations located at crucial decision points along axonal trajectories that regulate tract formation. These cells are usually early-born, transient and act at short-range or via cell-cell contact. The vast majority of guidepost cells initially identified were glial cells, which play a role in the formation of important axonal tracts in the forebrain, such as the corpus callosum, anterior, and post-optic commissures as well as optic chiasm. In the last decades, tangential migrating neurons have also been found to participate in the guidance of principal axonal tracts in the forebrain. This is the case for several examples such as guideposts for the lateral olfactory tract (LOT), corridor cells, which open an internal path for thalamo-cortical axons and Cajal-Retzius cells that have been involved in the formation of the entorhino-hippocampal connections. More recently, microglia, the resident macrophages of the brain, were specifically observed at the crossroads of important neuronal migratory routes and axonal tract pathways during forebrain development. We furthermore found that microglia participate to the shaping of prenatal forebrain circuits, thereby opening novel perspectives on forebrain development and wiring. Here we will review the last findings on already known guidepost cell populations and will discuss the role of microglia as a potentially new class of atypical guidepost cells.

4.
Cell Rep ; 8(5): 1271-9, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25159150

RESUMEN

Dysfunction of microglia, the tissue macrophages of the brain, has been associated with the etiology of several neuropsychiatric disorders. Consistently, microglia have been shown to regulate neurogenesis and synaptic maturation at perinatal and postnatal stages. However, microglia invade the brain during mid-embryogenesis and thus could play an earlier prenatal role. Here, we show that embryonic microglia, which display a transiently uneven distribution, regulate the wiring of forebrain circuits. Using multiple mouse models, including cell-depletion approaches and cx3cr1(-/-), CR3(-/-), and DAP12(-/-) mutants, we find that perturbing microglial activity affects the outgrowth of dopaminergic axons in the forebrain and the laminar positioning of subsets of neocortical interneurons. Since defects in both dopamine innervation and cortical networks have been linked to neuropsychiatric diseases, our study provides insights into how microglial dysfunction can impact forebrain connectivity and reveals roles for immune cells during normal assembly of brain circuits.


Asunto(s)
Microglía/metabolismo , Neurogénesis , Prosencéfalo/citología , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Interneuronas/citología , Interneuronas/metabolismo , Ratones , Ratones Endogámicos C57BL , Prosencéfalo/embriología , Prosencéfalo/fisiología , Receptor de Factor Estimulante de Colonias de Macrófagos/genética , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo
5.
Nat Neurosci ; 15(8): 1134-43, 2012 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-22772332

RESUMEN

Developing axons must control their growth rate to follow the appropriate pathways and establish specific connections. However, the regulatory mechanisms involved remain elusive. By combining live imaging with transplantation studies in mice, we found that spontaneous calcium activity in the thalamocortical system and the growth rate of thalamocortical axons were developmentally and intrinsically regulated. Indeed, the spontaneous activity of thalamic neurons governed axon growth and extension through the cortex in vivo. This activity-dependent modulation of growth was mediated by transcriptional regulation of Robo1 through an NF-κB binding site. Disruption of either the Robo1 or Slit1 genes accelerated the progression of thalamocortical axons in vivo, and interfering with Robo1 signaling restored normal axon growth in electrically silent neurons. Thus, modifications to spontaneous calcium activity encode a switch in the axon outgrowth program that allows the establishment of specific neuronal connections through the transcriptional regulation of Slit1 and Robo1 signaling.


Asunto(s)
Axones/fisiología , Señalización del Calcio/genética , Corteza Cerebral/fisiología , Proteínas del Tejido Nervioso/genética , Receptores Inmunológicos/genética , Tálamo/fisiología , Animales , Axones/patología , Calcio/metabolismo , Corteza Cerebral/crecimiento & desarrollo , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Proteínas del Tejido Nervioso/fisiología , Receptores Inmunológicos/fisiología , Tálamo/crecimiento & desarrollo , Proteínas Roundabout
6.
PLoS One ; 7(4): e35731, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22536431

RESUMEN

Tyrosinases, widely distributed among animals, plants and fungi, are involved in the biosynthesis of melanin, a pigment that has been exploited, in the course of evolution, to serve different functions. We conducted a deep evolutionary analysis of tyrosinase family amongst metazoa, thanks to the availability of new sequenced genomes, assessing that tyrosinases (tyr) represent a distinctive feature of all the organisms included in our study and, interestingly, they show an independent expansion in most of the analyzed phyla. Tyrosinase-related proteins (tyrp), which derive from tyr but show distinct key residues in the catalytic domain, constitute an invention of chordate lineage. In addition we here reported a detailed study of the expression territories of the ascidian Ciona intestinalis tyr and tyrps. Furthermore, we put efforts in the identification of the regulatory sequences responsible for their expression in pigment cell lineage. Collectively, the results reported here enlarge our knowledge about the tyrosinase gene family as valuable resource for understanding the genetic components involved in pigment cells evolution and development.


Asunto(s)
Ciona intestinalis/genética , Monofenol Monooxigenasa/genética , Animales , Sitios de Unión , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Cordados no Vertebrados/enzimología , Cordados no Vertebrados/genética , Ciona intestinalis/enzimología , Secuencia Conservada , Evolución Molecular , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Humanos , Filogenia , Estructura Terciaria de Proteína , Secuencias Reguladoras de Ácidos Nucleicos , Anémonas de Mar/enzimología , Anémonas de Mar/genética , Sintenía , Factores de Transcripción/fisiología
7.
Development ; 138(7): 1421-32, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21385767

RESUMEN

FGF and Wnt pathways constitute two fundamental signaling cascades, which appear to crosstalk in cooperative or antagonistic fashions in several developmental processes. In vertebrates, both cascades are involved in pigment cell development, but the possible interplay between FGF and Wnt remains to be elucidated. In this study, we have investigated the role of FGF and Wnt signaling in development of the pigment cells in the sensory organs of C. intestinalis. This species possesses the basic features of an ancestral chordate, thus sharing conserved molecular developmental mechanisms with vertebrates. Chemical and targeted perturbation approaches revealed that a FGF signal, spreading in time from early gastrulation to neural tube closure, is responsible for pigment cell precursor induction. This signal is transmitted via the MAPK pathway, which activates the Ci-Ets1/2 transcription factor. Targeted perturbation of Ci-TCF, a downstream factor of the canonical Wnt pathway, indicated its contribution to pigment cell differentiation Furthermore, analyses of the Ci-Tcf regulatory region revealed the involvement of the FGF effector, Ci-Ets1/2, in Ci-Tcf transcriptional regulation in pigment cell precursors. Our results indicate that both FGF and the canonical Wnt pathways are involved in C. intestinalis pigment cell induction and differentiation. Moreover, we present a case of direct transcriptional regulation exerted by the FGF signaling cascade, via the MAPK-ERK-Ets1/2, on the Wnt downstream gene Ci-Tcf. Several examples of FGF/Wnt signaling crosstalk have been described in different developmental processes; however, to our knowledge, FGF-Wnt cross-interaction at the transcriptional level has never been previously reported. These findings further contribute to clarifying the multitude of FGF-Wnt pathway interactions.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína Proto-Oncogénica c-ets-1/metabolismo , Células Receptoras Sensoriales/metabolismo , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , Animales , Diferenciación Celular/fisiología , Ciona intestinalis , Ensayo de Cambio de Movilidad Electroforética , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica/fisiología , Hibridación in Situ , Proteínas Quinasas Activadas por Mitógenos/genética , Proteína Proto-Oncogénica c-ets-1/genética , Proteínas Wnt/genética
8.
PLoS One ; 3(6): e2344, 2008 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-18523552

RESUMEN

BACKGROUND: The study of ascidians (Chordata, Tunicata) has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes. CONCLUSIONS/SIGNIFICANCE: Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity.


Asunto(s)
Ciona intestinalis/fisiología , Variación Genética , Animales , Ciona intestinalis/genética , Genética de Población , Repeticiones de Microsatélite/genética , Mutación , Fenotipo
9.
Dev Biol ; 300(1): 35-48, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16997294

RESUMEN

A systematic search in the available scaffolds of the Strongylocentrotus purpuratus genome has revealed that this sea urchin has 11 members of the ets gene family. A phylogenetic analysis of these genes showed that almost all vertebrate ets subfamilies, with the exception of one, so far found only in mammals, are each represented by one orthologous sea urchin gene. The temporal and spatial expression of the identified ETS factors was also analyzed during embryogenesis. Five ets genes (Sp-Ets1/2, Sp-Tel, Sp-Pea, Sp-Ets4, Sp-Erf) are also maternally expressed. Three genes (Sp-Elk, Sp-Elf, Sp-Erf) are ubiquitously expressed during embryogenesis, while two others (Sp-Gabp, Sp-Pu.1) are not transcribed until late larval stages. Remarkably, five of the nine sea urchin ets genes expressed during embryogenesis are exclusively (Sp-Ets1/2, Sp-Erg, Sp-Ese) or additionally (Sp-Tel, Sp-Pea) expressed in mesenchyme cells and/or their progenitors. Functional analysis of Sp-Ets1/2 has previously demonstrated an essential role of this gene in the specification of the skeletogenic mesenchyme lineage. The dynamic, and in some cases overlapping and/or unique, developmental expression pattern of the latter five genes suggests a complex, non-redundant function for ETS factors in sea urchin mesenchyme formation and differentiation.


Asunto(s)
Evolución Biológica , Genes Reguladores , Proteínas Proto-Oncogénicas c-ets/genética , Erizos de Mar/embriología , Erizos de Mar/genética , Animales , Ectodermo/fisiología , Embrión no Mamífero/fisiología , Endodermo/fisiología , Regulación del Desarrollo de la Expresión Génica , Erizos de Mar/crecimiento & desarrollo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...