Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(12): e2307073, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225690

RESUMEN

Polymer electrolyte membrane fuel cells (PEMFCs) suffer from severe performance degradation when operating under harsh conditions such as fuel starvation, shut-down/start-up, and open circuit voltage. A fundamental solution to these technical issues requires an integrated approach rather than condition-specific solutions. In this study, an anode catalyst based on Pt nanoparticles encapsulated in a multifunctional carbon layer (MCL), acting as a molecular sieve layer and protective layer is designed. The MCL enabled selective hydrogen oxidation reaction on the surface of the Pt nanoparticles while preventing their dissolution and agglomeration. Thus, the structural deterioration of a membrane electrode assembly can be effectively suppressed under various harsh operating conditions. The results demonstrated that redesigning the anode catalyst structure can serve as a promising strategy to maximize the service life of the current PEMFC system.

2.
ACS Appl Mater Interfaces ; 15(30): 36500-36511, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37485849

RESUMEN

Intriguing cationic defects with hollow nano-/microstructures are a critical challenge but a potential strategy to discover electrochemical energy conversion and storage devices with improved electrochemical performances. Herein, we successfully produced a highly porous, and large surface area of self-templated CuCo2O4 hollow spheres (CCOHSs) with cationic defects via a solvothermal route. We hypothesized that the inside-out Ostwald ripening mechanism of the template-free strategy was the framework for forming the CCOHSs. Cationic defects (Cu) within the CCOHSs were identified by employing various analytical techniques, including energy-dispersive X-ray spectroscopy analysis of both scanning and transmission electron microscopy, X-ray photon spectroscopy, and inductively coupled plasma-atomic emission spectroscopy. The resulting CCOHSs had significant properties, such as a high specific surface area of 98.32 m2 g-1, rich porosity, and battery-type electrode behavior in supercapacitor applications. Notably, the CCOHSs demonstrated an outstanding specific capacity of 1003.7 C g-1 at 1 A g-1, with excellent structural integrity and cycle stability. Moreover, the fabricated asymmetric CCOHS//activated carbon device exhibited a high energy density of 65.2 Wh kg-1 at a power density of 777.8 W kg-1.

3.
Nanomaterials (Basel) ; 12(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36364577

RESUMEN

The development of non-Pt or carbon-based catalysts for anion exchange membrane fuel cells (AEMFCs) requires identification of the active sites of the catalyst. Since not only metals but also carbon materials exhibit oxygen reduction reaction (ORR) activity in alkaline conditions, the contribution of carbon-based materials to ORR performance should also be thoroughly analyzed. However, the conventional CN- poisoning experiments, which are mainly used to explain the main active site of M-N-C catalysts, are limited to only qualitative discussions, having the potential to make fundamental errors. Here, we report a modified electrochemical analysis to quantitatively investigate the contribution of the metal and carbon active sites to ORR currents at a fixed potential by sequentially performing chronoamperometry with two reaction inhibitors, CN- and benzyl trimethylammonium (BTMA+). As a result, we discover how to quantify the individual contributions of two active sites (Pt nanoparticles and carbon support) of carbon-supported Pt (Pt/C) nanoparticles as a model catalyst. This study is expected to provide important clues for the active site analysis of carbon-supported non-Pt catalysts, such as M-N-C catalysts composed of heterogeneous elements.

4.
Adv Colloid Interface Sci ; 304: 102664, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35413509

RESUMEN

Graphene is an intriguing two-dimensional honeycomb-like carbon material with a unique basal plane structure, charge carrier mobility, thermal conductivity, wide electrochemical spectrum, and unusual physicochemical properties. Therefore, it has attracted considerable scientific interest in the field of nanoscience and bionanotechnology. The high specific surface area of graphene allows it to support high biomolecule loading for good detection sensitivity. As such, graphene, graphene oxide (GO), and reduced GO are excellent materials for the fabrication of new nanocomposites and electrochemical sensors. Graphene has been widely used as a chemical building block and/or scaffold with various materials to create highly sensitive and selective electrochemical sensing microdevices. Over the past decade, significant advancements have been made by utilizing graphene and graphene-based nanocomposites to design electrochemical sensors with enhanced analytical performance. This review focus on the synthetic strategies, as well as the structure-to-function studies of graphene, electrochemistry, novel multi nanocomposites combining graphene, limit of detection, stability, sensitivity, assay time. Finally, the review describes the challenges, strategies and outlook on the future development of graphene sensors technology that would be usable for the internet of things are also highlighted.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanocompuestos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Electroquímica , Grafito/química , Nanocompuestos/química
5.
Chemosphere ; 287(Pt 3): 132281, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34826940

RESUMEN

Herein, we describe a high-performance electrochemical sensor for the detection of regorafenib (REG) using bimetallic Pd-Ru nanoparticles anchored on pomegranate peel extract (PPE) derived reduced graphene oxide (Pd-Ru/rGO). PPE was employed to neutralize the extremely acidic graphene then cast-off along with the metal precursor for the duration of the chemical reduction to accomplish well dispersed Pd-Ru nanoparticles. Bimetallic Pd-Ru/rGO nanocomposites were synthesized using a facile chemical reduction method. Under optimal conditions, based on the differential pulse voltammetric studies it has been confirmed that the fabricated sensors has good electrocatalytic activity toward the detection of REG, spanning over the linear dynamic range of 0.5-300 nM. Moreover, the sensor exhibited a low limit of detection of 1.6 nM and a limit of quantification of 4.8 nM. The electrochemical sensor unveiled admirable selectivity and sensitivity, reproducibility, and repeatability. The fabricated sensor was suitable for real sample analysis (pharmaceutical tablet, human blood plasm, wastewater) with satisfactory recovery. The strategy presented herein can be employed in the development of electrochemical sensors for other target analytes.


Asunto(s)
Antineoplásicos , Grafito , Nanocompuestos , Técnicas Electroquímicas , Electrodos , Humanos , Reproducibilidad de los Resultados
6.
Nanoscale ; 11(28): 13300-13308, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31287482

RESUMEN

Use of Pt-based electro-catalysts for the oxygen reduction reaction (ORR) is a major hindrance in large-scale application of proton exchange membrane fuel cells (PEMFCs). Hence, new, cost-effective and high performance electro-catalysts are required for the commercial success of PEMFCs. In this work, a Pt-free magnesium oxide (MgO) decorated multi-layered reduced graphene oxide (MLGO) composite is tested as an electro-catalyst for the ORR. The ORR activity of MgO/MLGO in terms of diffusion-controlled current density is found to be superior (6.63 mA per cm2-geo) than that of in-house prepared Pt/rGO (5.96 mA per cm2-geo) and commercial Pt/C (5.02 mA per cm2-geo). The applicability of less expensive MgO/MLGO not only provides a new electro-catalyst but also provides a new direction in exploring metal oxide-based electro-catalysts for the ORR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...