Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Am J Hum Genet ; 111(2): 338-349, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38228144

RESUMEN

Clinical exome and genome sequencing have revolutionized the understanding of human disease genetics. Yet many genes remain functionally uncharacterized, complicating the establishment of causal disease links for genetic variants. While several scoring methods have been devised to prioritize these candidate genes, these methods fall short of capturing the expression heterogeneity across cell subpopulations within tissues. Here, we introduce single-cell tissue-specific gene prioritization using machine learning (STIGMA), an approach that leverages single-cell RNA-seq (scRNA-seq) data to prioritize candidate genes associated with rare congenital diseases. STIGMA prioritizes genes by learning the temporal dynamics of gene expression across cell types during healthy organogenesis. To assess the efficacy of our framework, we applied STIGMA to mouse limb and human fetal heart scRNA-seq datasets. In a cohort of individuals with congenital limb malformation, STIGMA prioritized 469 variants in 345 genes, with UBA2 as a notable example. For congenital heart defects, we detected 34 genes harboring nonsynonymous de novo variants (nsDNVs) in two or more individuals from a set of 7,958 individuals, including the ortholog of Prdm1, which is associated with hypoplastic left ventricle and hypoplastic aortic arch. Overall, our findings demonstrate that STIGMA effectively prioritizes tissue-specific candidate genes by utilizing single-cell transcriptome data. The ability to capture the heterogeneity of gene expression across cell populations makes STIGMA a powerful tool for the discovery of disease-associated genes and facilitates the identification of causal variants underlying human genetic disorders.


Asunto(s)
Cardiopatías Congénitas , Transcriptoma , Humanos , Animales , Ratones , Exoma/genética , Cardiopatías Congénitas/genética , Secuenciación del Exoma , Aprendizaje Automático , Análisis de la Célula Individual/métodos , Enzimas Activadoras de Ubiquitina/genética
3.
Nature ; 623(7988): 772-781, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968388

RESUMEN

Mouse models are a critical tool for studying human diseases, particularly developmental disorders1. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse2. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models. We applied combinatorial indexing-based single-cell RNA sequencing3 to profile 101 embryos of 22 mutant and 4 wild-type genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. The 22 mutants represent a range of anticipated phenotypic severities, from established multisystem disorders to deletions of individual regulatory regions4,5. We developed and applied several analytical frameworks for detecting differences in composition and/or gene expression across 52 cell types or trajectories. Some mutants exhibit changes in dozens of trajectories whereas others exhibit changes in only a few cell types. We also identify differences between widely used wild-type strains, compare phenotyping of gain- versus loss-of-function mutants and characterize deletions of topological associating domain boundaries. Notably, some changes are shared among mutants, suggesting that developmental pleiotropy might be 'decomposable' through further scaling of this approach. Overall, our findings show how single-cell profiling of whole embryos can enable the systematic molecular and cellular phenotypic characterization of mouse mutants with unprecedented breadth and resolution.


Asunto(s)
Discapacidades del Desarrollo , Embrión de Mamíferos , Mutación , Fenotipo , Análisis de Expresión Génica de una Sola Célula , Animales , Ratones , Núcleo Celular/genética , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Mutación con Ganancia de Función , Genotipo , Mutación con Pérdida de Función , Modelos Genéticos , Modelos Animales de Enfermedad
4.
Development ; 150(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36715020

RESUMEN

Thyroid hormone and its receptor TRα1 play an important role in brain development. Several animal models have been used to investigate this function, including mice heterozygous for the TRα1R384C mutation, which confers receptor-mediated hypothyroidism. These mice display abnormalities in several autonomic functions, which was partially attributed to a developmental defect in hypothalamic parvalbumin neurons. However, whether other cell types in the hypothalamus are similarly affected remains unknown. Here, we used single-nucleus RNA sequencing to obtain an unbiased view on the importance of TRα1 for hypothalamic development and cellular diversity. Our data show that defective TRα1 signaling has surprisingly little effect on the development of hypothalamic neuronal populations, but it heavily affects hypothalamic oligodendrocytes. Using selective reactivation of the mutant TRα1 during specific developmental periods, we find that early postnatal thyroid hormone action seems to be crucial for proper hypothalamic oligodendrocyte maturation. Taken together, our findings underline the well-known importance of postnatal thyroid health for brain development and provide an unbiased roadmap for the identification of cellular targets of TRα1 action in mouse hypothalamic development.


Asunto(s)
ARN , Receptores alfa de Hormona Tiroidea , Ratones , Animales , Receptores alfa de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/metabolismo , Hormonas Tiroideas , Glándula Tiroides , Hipotálamo/metabolismo
5.
Mamm Genome ; 34(2): 276-284, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36401619

RESUMEN

The structure and function of the circulatory system, including the heart, have undergone substantial changes with the vertebrate evolution. Although the basic function of the heart is to pump blood through the body, its size, shape, speed, regeneration capacity, etc. vary considerably across species. Here, we address the differences among vertebrate hearts using a single-cell transcriptomics approach. Published datasets of macaque (Macaca fascicularis), mouse, and zebrafish hearts were integrated and compared to the human heart as a reference. While the three mammalian hearts integrated well, the zebrafish heart showed very little overlap with the other species. Our analysis revealed a mouse-specific cell subpopulation of ventricular cardiomyocytes (CM), represented by strikingly different expression patterns of specific genes related to high-energy metabolism. Interestingly, the observed differences between mouse and human CM coincided with actual biological differences between the two species. Smooth muscle and endothelial cells (EC) exhibited species-specific differences in clustering and gene expression, respectively, which we attribute to the tissues selected for sequencing, given different focuses of the original studies. Finally, we compared human and zebrafish heart-specific fibroblasts (FB) and identified a distinctively high expression of genes associated with heart regeneration following injury in zebrafish. Together, our results show that integration of numerous datasets of different species and different sequencing technologies is feasible and that this approach can identify species-specific differences and similarities in the heart.


Asunto(s)
Células Endoteliales , Pez Cebra , Adulto , Animales , Ratones , Humanos , Pez Cebra/genética , Regeneración/genética , Miocitos Cardíacos/metabolismo , Perfilación de la Expresión Génica , Mamíferos/genética
6.
J Med Genet ; 59(9): 827-839, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35790352

RESUMEN

Single-cell sequencing is a powerful approach that can detect genetic alterations and their phenotypic consequences in the context of human development, with cellular resolution. Humans start out as single-cell zygotes and undergo fission and differentiation to develop into multicellular organisms. Before fertilisation and during development, the cellular genome acquires hundreds of mutations that propagate down the cell lineage. Whether germline or somatic in nature, some of these mutations may have significant genotypic impact and lead to diseased cellular phenotypes, either systemically or confined to a tissue. Single-cell sequencing enables the detection and monitoring of the genotype and the consequent molecular phenotypes at a cellular resolution. It offers powerful tools to compare the cellular lineage between 'normal' and 'diseased' conditions and to establish genotype-phenotype relationships. By preserving cellular heterogeneity, single-cell sequencing, unlike bulk-sequencing, allows the detection of even small, diseased subpopulations of cells within an otherwise normal tissue. Indeed, the characterisation of biopsies with cellular resolution can provide a mechanistic view of the disease. While single-cell approaches are currently used mainly in basic research, it can be expected that applications of these technologies in the clinic may aid the detection, diagnosis and eventually the treatment of rare genetic diseases as well as cancer. This review article provides an overview of the single-cell sequencing technologies in the context of human genetics, with an aim to empower clinicians to understand and interpret the single-cell sequencing data and analyses. We discuss the state-of-the-art experimental and analytical workflows and highlight current challenges/limitations. Notably, we focus on two prospective applications of the technology in human genetics, namely the annotation of the non-coding genome using single-cell functional genomics and the use of single-cell sequencing data for in silico variant prioritisation.


Asunto(s)
Variación Genética , Genómica , Genotipo , Genética Humana , Humanos , Fenotipo
7.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216353

RESUMEN

X-linked dystonia-parkinsonism (XDP) is a severe neurodegenerative disorder that manifests as adult-onset dystonia combined with parkinsonism. A SINE-VNTR-Alu (SVA) retrotransposon inserted in an intron of the TAF1 gene reduces its expression and alters splicing in XDP patient-derived cells. As a consequence, increased levels of the TAF1 intron retention transcript TAF1-32i can be found in XDP cells as compared to healthy controls. Here, we investigate the sequence of the deep intronic region included in this transcript and show that it is also present in cells from healthy individuals, albeit in lower amounts than in XDP cells, and that it undergoes degradation by nonsense-mediated mRNA decay. Furthermore, we investigate epigenetic marks (e.g., DNA methylation and histone modifications) present in this intronic region and the spanning sequence. Finally, we show that the SVA evinces regulatory potential, as demonstrated by its ability to repress the TAF1 promoter in vitro. Our results enable a better understanding of the disease mechanisms underlying XDP and transcriptional alterations caused by SVA retrotransposons.


Asunto(s)
Trastornos Distónicos/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Trastornos Parkinsonianos/genética , Retroelementos/genética , Transcripción Genética/genética , Adolescente , Adulto , Metilación de ADN/genética , Femenino , Histona Acetiltransferasas/genética , Humanos , Intrones/genética , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética , Elementos de Nucleótido Esparcido Corto/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética , Adulto Joven
8.
Am J Hum Genet ; 108(9): 1725-1734, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34433009

RESUMEN

Copy-number variations (CNVs) are a common cause of congenital limb malformations and are interpreted primarily on the basis of their effect on gene dosage. However, recent studies show that CNVs also influence the 3D genome chromatin organization. The functional interpretation of whether a phenotype is the result of gene dosage or a regulatory position effect remains challenging. Here, we report on two unrelated families with individuals affected by bilateral hypoplasia of the femoral bones, both harboring de novo duplications on chromosome 10q24.32. The ∼0.5 Mb duplications include FGF8, a key regulator of limb development and several limb enhancer elements. To functionally characterize these variants, we analyzed the local chromatin architecture in the affected individuals' cells and re-engineered the duplications in mice by using CRISPR-Cas9 genome editing. We found that the duplications were associated with ectopic chromatin contacts and increased FGF8 expression. Transgenic mice carrying the heterozygous tandem duplication including Fgf8 exhibited proximal shortening of the limbs, resembling the human phenotype. To evaluate whether the phenotype was a result of gene dosage, we generated another transgenic mice line, carrying the duplication on one allele and a concurrent Fgf8 deletion on the other allele, as a control. Surprisingly, the same malformations were observed. Capture Hi-C experiments revealed ectopic interaction with the duplicated region and Fgf8, indicating a position effect. In summary, we show that duplications at the FGF8 locus are associated with femoral hypoplasia and that the phenotype is most likely the result of position effects altering FGF8 expression rather than gene dosage effects.


Asunto(s)
Duplicación Cromosómica , Cromosomas Humanos Par 10/química , Variaciones en el Número de Copia de ADN , Factor 8 de Crecimiento de Fibroblastos/genética , Deformidades Congénitas de las Extremidades Inferiores/genética , Adolescente , Alelos , Animales , Sistemas CRISPR-Cas , Preescolar , Cromatina/química , Cromatina/metabolismo , Cromosomas Humanos Par 10/metabolismo , Elementos de Facilitación Genéticos , Familia , Femenino , Fémur/anomalías , Fémur/diagnóstico por imagen , Fémur/metabolismo , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Edición Génica , Heterocigoto , Humanos , Lactante , Deformidades Congénitas de las Extremidades Inferiores/diagnóstico por imagen , Deformidades Congénitas de las Extremidades Inferiores/metabolismo , Deformidades Congénitas de las Extremidades Inferiores/patología , Masculino , Ratones , Ratones Transgénicos , Linaje , Fenotipo
9.
ACS Sens ; 6(3): 1375-1383, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33660984

RESUMEN

To address the growing demand for simultaneous imaging of multiple biomarkers in highly scattering media such as organotypic cell cultures, we introduce a new type of photoluminescent nanomaterial termed "tau-ruby" composed of ruby nanocrystals (Al2O3:Cr3+) with tunable emission lifetime. The lifetime tuning range from 2.4 to 3.2 ms was achieved by varying the Cr3+ dopant concentration from 0.8% to 0.2%, affording facile implementation of background-free detection. We developed inexpensive scalable production of tau-ruby characterized by bright emission, narrow spectrum (693 ± 2 nm), and virtually unlimited photostability upon excitation with affordable excitation/detection sources, noncytotoxic and insensitive to microenvironmental fluctuations. By functionalizing the surface of tau-rubies with targeting antibodies, we obtained different biomarkers suitable for multiplexed lifetime imaging. As a proof of principle, three tau-ruby bioprobes, characterized by three mean lifetimes, were deployed to label three µ-opioid receptor species expressed on transfected cancer cells, each fused to a unique epitope, so that three types of cells were lifetime-encoded. Robust decoding of photoluminescent signals that report on each cell type was achieved by using a home-built lifetime imaging system and resulted in high-contrast multiplexed lifetime imaging of the cells.


Asunto(s)
Técnicas Biosensibles , Nanopartículas , Nanoestructuras , Diagnóstico por Imagen
10.
Methods Mol Biol ; 2201: 59-70, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32975789

RESUMEN

Sensitive and long-term fluorescence imaging of G-protein-coupled receptors enables exploration of molecular level details of these therapeutically relevant proteins, including their expression, localization, signaling, and intracellular trafficking. In this context, labeling these receptors with bright and photostable fluorescent probes is necessary to overcome current imaging problems such as optical background and photobleaching. Here, we describe the procedures to functionalize nanoruby (and other similar nanoparticles) with NeutrAvidin (a streptavidin analog) and to apply this bioconjugate for ultrasensitive, long-term imaging of µ-opioid receptors heterologously expressed in AtT-20 cells. The receptor targeting is mediated via a biotinylated primary antibody, rendering this methodology extendable to other G-protein-coupled or, more generally, cell-surface receptors. Nanoruby-based time-gated imaging enables indefinitely long visualization of single particles even in high-autofluorescence media, such as serum, by completely suppressing autofluorescence and any laser backscatter.


Asunto(s)
Avidina/química , Diagnóstico por Imagen/métodos , Receptores Opioides mu/metabolismo , Biotinilación/métodos , Fluorescencia , Colorantes Fluorescentes , Humanos , Nanopartículas , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides/metabolismo , Estreptavidina
11.
Biomed Opt Express ; 11(11): 6137-6153, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33282480

RESUMEN

Protein-protein interactions at the plasma membrane mediate transmembrane signaling. Dual-channel fluorescence cross-correlation spectroscopy (dc-FCCS) is a method with which these interactions can be quantified in a cellular context. However, factors such as incomplete maturation of fluorescent proteins, spectral crosstalk, and fluorescence resonance energy transfer (FRET) affect quantification. Some of these can be corrected or accounted for during data analysis and/or interpretation. Here, we experimentally and analytically demonstrate that it is difficult to correct the error caused due to FRET when applying dc-FCCS to measure binding affinity or bound molecular concentrations. Additionally, the presence of dark fluorescent proteins due to incomplete maturation introduces further errors, which too cannot be corrected in the presence of FRET. Based on simulations, we find that modalities such as pulse-interleaved excitation FCCS do not eliminate FRET-induced errors. Finally, we demonstrate that the detrimental effect of FRET can be eliminated with careful experimental design when applying dc-FCCS to quantify protein-protein interactions at the plasma membrane of living cells.

12.
Biophys J ; 114(9): 2231-2242, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29742416

RESUMEN

Cell volume regulation is fundamentally important in phenomena such as cell growth, proliferation, tissue homeostasis, and embryogenesis. How the cell size is set, maintained, and changed over a cell's lifetime is not well understood. In this work we focus on how the volume of nonexcitable tissue cells is coupled to the cell membrane electrical potential and the concentrations of membrane-permeable ions in the cell environment. Specifically, we demonstrate that a sudden cell depolarization using the whole-cell patch clamp results in a 50% increase in cell volume, whereas hyperpolarization results in a slight volume decrease. We find that cell volume can be partially controlled by changing the chloride or the sodium/potassium concentrations in the extracellular environment while maintaining a constant external osmotic pressure. Depletion of external chloride leads to a volume decrease in suspended HN31 cells. Introducing cells to a high-potassium solution causes volume increase up to 50%. Cell volume is also influenced by cortical tension: actin depolymerization leads to cell volume increase. We present an electrophysiology model of water dynamics driven by changes in membrane potential and the concentrations of permeable ions in the cells surrounding. The model quantitatively predicts that the cell volume is directly proportional to the intracellular protein content.


Asunto(s)
Tamaño de la Célula , Fenómenos Electrofisiológicos , Actinas/química , Línea Celular Tumoral , Cloruros/metabolismo , Espacio Extracelular/metabolismo , Humanos , Espacio Intracelular/metabolismo , Potasio/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Sodio/metabolismo
13.
ACS Appl Mater Interfaces ; 9(45): 39197-39208, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29022702

RESUMEN

At the forefront of developing fluorescent probes for biological imaging applications are enhancements aimed at increasing their brightness, contrast, and photostability, especially toward demanding applications of single-molecule detection. In comparison with existing probes, nanorubies exhibit unlimited photostability and a long emission lifetime (∼4 ms), which enable continuous imaging at single-particle sensitivity in highly scattering and fluorescent biological specimens. However, their wide application as fluorescence probes has so far been hindered by the absence of facile methods for scaled-up high-volume production and molecularly specific targeting. The present work encompasses the large-scale production of colloidally stable nanoruby particles, the demonstration of their biofunctionality and negligible cytotoxicity, as well as the validation of its use for targeted biomolecular imaging. In addition, optical characteristics of nanorubies are found to be comparable or superior to those of state-of-the-art quantum dots. Protocols of reproducible and robust coupling of functional proteins to the nanoruby surface are also presented. As an example, NeutrAvidin-coupled nanoruby show excellent affinity and specificity to µ-opioid receptors in fixed and live cells, allowing wide-field imaging of G-protein coupled receptors with single-particle sensitivity.


Asunto(s)
Nanoestructuras , Materiales Biocompatibles , Colorantes Fluorescentes , Puntos Cuánticos , Receptores Acoplados a Proteínas G , Factores de Tiempo
14.
PLoS One ; 12(9): e0185393, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28949989

RESUMEN

Focussed radiosurgery may provide a means of inducing molecular changes on the luminal surface of diseased endothelium to allow targeted delivery of novel therapeutic compounds. We investigated the potential of ionizing radiation to induce surface expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) on endothelial cells (EC) in vitro and in vivo, to assess their suitability as vascular targets in irradiated arteriovenous malformations (AVMs). Cultured brain microvascular EC were irradiated by linear accelerator at single doses of 0, 5, 15 or 25 Gy and expression of ICAM-1 and VCAM-1 measured by qRT-PCR, Western, ELISA and immunocytochemistry. In vivo, near-infrared (NIR) fluorescence optical imaging using Xenolight 750-conjugated ICAM-1 or VCAM-1 antibodies examined luminal biodistribution over 84 days in a rat AVM model after Gamma Knife surgery at a single 15 Gy dose. ICAM-1 and VCAM-1 were minimally expressed on untreated EC in vitro. Doses of 15 and 25 Gy stimulated expression equally; 5 Gy was not different from the unirradiated. In vivo, normal vessels did not bind or retain the fluorescent probes, however binding was significant in AVM vessels. No additive increases in probe binding were found in response to radiosurgery at a dose of 15 Gy. In summary, radiation induces adhesion molecule expression in vitro but elevated baseline levels in AVM vessels precludes further induction in vivo. These molecules may be suitable targets in irradiated vessels without hemodynamic derangement, but not AVMs. These findings demonstrate the importance of using flow-modulated, pre-clinical animal models for validating candidate proteins for vascular targeting in irradiated AVMs.


Asunto(s)
Modelos Animales de Enfermedad , Molécula 1 de Adhesión Intercelular/metabolismo , Malformaciones Arteriovenosas Intracraneales/metabolismo , Malformaciones Arteriovenosas Intracraneales/cirugía , Radiocirugia/métodos , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Masculino , Ratones , Dosificación Radioterapéutica , Ratas , Ratas Sprague-Dawley
15.
J Proteome Res ; 16(12): 4531-4535, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28895742

RESUMEN

The evidence that any protein exists in the Human Proteome Project (HPP; protein evidence 1 or PE1) has revolved primarily (although not exclusively) around mass spectrometry (MS) (93% of PE1 proteins have MS evidence in the latest neXtProt release), with robust and stringent, well-curated metrics that have served the community well. This has led to a significant number of proteins still considered "missing" (i.e., PE2-4). Many PE2-4 proteins have MS evidence of unacceptable quality (small or not enough unitypic peptides and unacceptably high protein/peptide FDRs), transcriptomic, or antibody evidence. Here we use a Chromosome 7 PE2 example called Prestin to demonstrate that clear and robust criteria/metrics need to be developed for proteins that may not or cannot produce clear-cut MS evidence while possessing significant non-MS evidence, including disease-association data. Many of the PE2-4 proteins are inaccessible, spatiotemporally expressed in a limited way, or expressed at such a very low copy number as to be unable to be detected by current MS methodologies. We propose that the HPP community consider and lead a communal initiative to accelerate the discovery and characterization of these types of "missing" proteins.


Asunto(s)
Proteínas de Transporte de Anión/análisis , Espectrometría de Masas , Humanos , Proteoma/análisis , Proteoma/normas , Transportadores de Sulfato
16.
Methods Mol Biol ; 1530: 195-228, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28150204

RESUMEN

During cytoskeleton remodeling, cancer cells generate force at the plasma membrane that originates from chemical motors (e.g., actin). This force (pN) and its time course reflect the on and off-rates of the motors. We describe the design and calibration of a force-measuring device (i.e., optical tweezers) that is used to monitor this force and its time course at the edge of a cell, with particular emphasis on the temporal resolution of the instrument.


Asunto(s)
Movimiento Celular/fisiología , Pinzas Ópticas , Óptica y Fotónica/métodos , Algoritmos , Fenómenos Biomecánicos , Modelos Teóricos , Óptica y Fotónica/instrumentación , Relación Señal-Ruido , Temperatura
17.
J Biophotonics ; 9(8): 848-58, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27264934

RESUMEN

Fluorescence microscopy is a fundamental technique for the life sciences, where biocompatible and photostable photoluminescence probes in combination with fast and sensitive imaging systems are continually transforming this field. A wide-field time-gated photoluminescence microscopy system customised for ultrasensitive imaging of unique nanoruby probes with long photoluminescence lifetime is described. The detection sensitivity derived from the long photoluminescence lifetime of the nanoruby makes it possible to discriminate signals from unwanted autofluorescence background and laser backscatter by employing a time-gated image acquisition mode. This mode enabled several-fold improvement of the photoluminescence imaging contrast of discrete nanorubies dispersed on a coverslip. It enabled recovery of the photoluminescence signal emanating from discrete nanorubies when covered by a layer of an organic fluorescent dye, which were otherwise invisible without the use of spectral filtering approaches. Time-gated imaging also facilitated high sensitivity detection of nanorubies in a biological environment of cultured cells. Finally, we monitor the binding kinetics of nanorubies to a functionalised substrate, which exemplified a real-time assay in biological fluids. 3D-pseudo colour images of nanorubies immersed in a highly fluorescent dye solution. Nanoruby photoluminescence is subdued by that of the dye in continuous excitation/imaging (left), however it can be recovered by time-gated imaging (right). At the bottom is schematic diagram of nanoruby assay in a biological fluid.


Asunto(s)
Colorantes Fluorescentes , Mediciones Luminiscentes/métodos , Microscopía Fluorescente , Animales , Línea Celular Tumoral , Rayos Láser , Luz , Ratones
18.
Nat Commun ; 4: 2949, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24335832

RESUMEN

Metamaterials, artificial electromagnetic media realized by subwavelength nano-structuring, have become a paradigm for engineering electromagnetic space, allowing for independent control of both electric and magnetic responses of the material. Whereas most metamaterials studied so far are limited to passive structures, the need for active metamaterials is rapidly growing. However, the fundamental question on how the energy of emitters is distributed between both (electric and magnetic) interaction channels of the metamaterial still remains open. Here we study simultaneous spontaneous emission of quantum dots into both of these channels and define the control parameters for tailoring the quantum-dot coupling to metamaterials. By superimposing two orthogonal modes of equal strength at the wavelength of quantum-dot photoluminescence, we demonstrate a sharp difference in their interaction with the magnetic and electric metamaterial modes. Our observations reveal the importance of mode engineering for spontaneous emission control in metamaterials, paving a way towards loss-compensated metamaterials and metamaterial nanolasers.

19.
J Biomed Opt ; 18(7): 76004, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23843082

RESUMEN

Innovative luminescent nanomaterials, termed upconversion nanoparticles (UCNPs), have demonstrated considerable promise as molecular probes for high-contrast optical imaging in cells and small animals. The feasibility study of optical diagnostics in humans is reported here based on experimental and theoretical modeling of optical imaging of an UCNP-labeled breast cancer lesion. UCNPs synthesized in-house were surface-capped with an amphiphilic polymer to achieve good colloidal stability in aqueous buffer solutions. The scFv4D5 mini-antibodies were grafted onto the UCNPs via a high-affinity molecular linker barstar:barnase (Bs:Bn) to allow their specific binding to the human epidermal growth factor receptor HER2/neu, which is overexpressed in human breast adenocarcinoma cells SK-BR-3. UCNP-Bs:Bn-scFv4D5 biocomplexes exhibited high-specific immobilization on the SK-BR-3 cells with the optical contrast as high as 10:1 benchmarked against a negative control cell line. Breast cancer optical diagnostics was experimentally modeled by means of epi-luminescence imaging of a monolayer of the UCNP-labeled SK-BR-3 cells buried under a breast tissue mimicking optical phantom. The experimental results were analyzed theoretically and projected to in vivo detection of early-stage breast cancer. The model predicts that the UCNP-assisted cancer detection is feasible up to 4 mm in tissue depth, showing considerable potential for diagnostic and image-guided surgery applications.


Asunto(s)
Neoplasias de la Mama/patología , Sondas Moleculares/química , Nanopartículas/química , Imagen Óptica/métodos , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Anticuerpos Monoclonales , Neoplasias de la Mama/metabolismo , Células CHO , Proteínas Portadoras/química , Línea Celular Tumoral , Cricetinae , Cricetulus , Estudios de Factibilidad , Femenino , Humanos , Inmunoglobulinas/química , Sustancias Luminiscentes/química , Modelos Biológicos , Sondas Moleculares/metabolismo , Fantasmas de Imagen , Receptor ErbB-2/metabolismo
20.
PLoS One ; 8(5): e63292, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23691012

RESUMEN

The unique luminescent properties of new-generation synthetic nanomaterials, upconversion nanoparticles (UCNPs), enabled high-contrast optical biomedical imaging by suppressing the crowded background of biological tissue autofluorescence and evading high tissue absorption. This raised high expectations on the UCNP utilities for intracellular and deep tissue imaging, such as whole animal imaging. At the same time, the critical nonlinear dependence of the UCNP luminescence on the excitation intensity results in dramatic signal reduction at (∼1 cm) depth in biological tissue. Here, we report on the experimental and theoretical investigation of this trade-off aiming at the identification of optimal application niches of UCNPs e.g. biological liquids and subsurface tissue layers. As an example of such applications, we report on single UCNP imaging through a layer of hemolyzed blood. To extend this result towards in vivo applications, we quantified the optical properties of single UCNPs and theoretically analyzed the prospects of single-particle detectability in live scattering and absorbing bio-tissue using a human skin model. The model predicts that a single 70-nm UCNP would be detectable at skin depths up to 400 µm, unlike a hardly detectable single fluorescent (fluorescein) dye molecule. UCNP-assisted imaging in the ballistic regime thus allows for excellent applications niches, where high sensitivity is the key requirement.


Asunto(s)
Nanopartículas , Imagen Óptica/métodos , Animales , Estudios de Factibilidad , Hemólisis , Humanos , Piel/citología , Piel/metabolismo , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...