Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 12(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38540199

RESUMEN

Given that oxidative stress represents an important etiological factor in the pathogenesis of psoriasis, the aim of this study was to assess the effects of different therapeutic approaches, methotrexate, secukinumab, and ustekinumab on systemic oxidative stress biomarkers in psoriatic patients. This study involved 78 psoriatic patients, divided into the group treated with methotrexate (23 patients), secukinumab (28 patients), and ustekinumab (27 patients), and 15 healthy controls. Oxidative stress biomarkers (index of lipid peroxidation measured as TBARS, nitrites (NO2-), superoxide anion radical (O2-), and hydrogen peroxide (H2O2)) and antioxidative defense system (superoxide dismutase (SOD) activity, catalase (CAT) activity, and reduced glutathione (GSH)) were determined spectrophotometrically from the blood before the initiation of therapy in 16th, 28th, and 52nd week. O2- and SOD showed the most prominent changes comparing the psoriatic patients and healthy controls. CAT activity was significantly lower in psoriatic patients, and methotrexate induced a further decline in CAT activity. Ustekinumab induced a significant increase in GSH level after 52 weeks of treatment, while methotrexate reduced GSH. All applied therapeutic options induced a reduction in PASI, BSA, DLQI, and EARP. Biological drugs exert more pronounced antioxidant effects compared to methotrexate, which is most clearly observed in the values of O2- and SOD.

2.
Thromb Haemost ; 123(12): 1129-1139, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37604187

RESUMEN

BACKGROUND: Few previous studies indicated the role of oxidative stress in the pathogenesis of childhood idiopathic thrombocytopenic purpura (ITP), but there are little data regarding changes in redox balance in different forms of the disease, and changes after therapeutic procedures. We aimed to investigate the values of pro-oxidants and antioxidative capacity in various forms of ITP before and after the applying therapy. MATERIALS AND METHODS: The research included 102 children, classified into the following groups: (1) newly diagnosed ITP (ndITP), (2) persistent ITP, (3) chronic ITP (chITP), and (4) control groups: (A) healthy control and (B) previously experienced ITP-healthy children who had been suffering from ITP earlier. During the clinical assessment, a blood sample was taken from the patients, from which the value of pro-oxidants (index of lipid peroxidation measured as TBARS, nitrites [NO2 -], as measurement of nitric oxide [NO] production, superoxide anion radical [O2 -], and hydrogen peroxide [H2O2]) and the capacity of antioxidant protection (activity of superoxide dismutase and catalase, and quantity of reduced glutathione) were determined spectrophotometrically. RESULTS: Our results demonstrated that values of pro-oxidants, especially reflected through the TBARS and O2 -, were the highest in the ndITP and exacerbated chITP groups. Also, the activity of the endogenous antioxidative defense system was the lowest in these groups. Intravenous immunoglobulin therapy in the ndITP group exerted the most prominent effect on the redox balance. CONCLUSION: It can be concluded that severity and exacerbation of the ITP are closely related to the redox status.


Asunto(s)
Púrpura Trombocitopénica Idiopática , Niño , Humanos , Sustancias Reactivas al Ácido Tiobarbitúrico , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno , Antioxidantes , Oxidación-Reducción , Superóxidos
3.
Oxid Med Cell Longev ; 2022: 1344946, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265259

RESUMEN

Due to existing evidence regarding antioxidant and anti-inflammatory effects of Melissa officinalis extracts (MOEs), this study was aimed at investigating the potential of ethanolic MOE to prevent the development of myocarditis and its ability to ameliorate the severity of experimental autoimmune myocarditis (EAM) by investigating MOE effects on in vivo cardiac function, structure, morphology, and oxidative stress parameters. A total of 50 7-week-old male Dark Agouti rats were enrolled in the study and randomly allocated into the following groups: CTRL, nontreated healthy rats; EAM, nontreated rats with EAM; MOE50, MOE100, and MOE200, rats with EAM treated with either 50, 100, or 200 mg/kg of MOE for 3 weeks per os. Myocarditis was induced by immunization of the rats with porcine myocardial myosin (0.5 mg) emulsion on day 0. Cardiac function and dimensions of the left ventricle (LV) were assessed via echocardiography. Additionally, the blood pressure and heart rate were measured. On day 21, rats were sacrificed and the hearts were isolated for further histopathological analyses (H/E and Picrosirius red staining). The blood samples were collected to determine oxidative stress parameters. The EAM group characteristically showed greater LV wall thickness and lower ejection fraction (50.33 ± 7.94% vs. 84.81 ± 7.74%) and fractional shortening compared to CTRL (p < 0.05). MOE significantly improved echocardiographic parameters (EF in MOE200 81.44 ± 5.51%) and also reduced inflammatory infiltrate (by 88.46%; p < 0.001) and collagen content (by 76.39%; p < 0.001) in the heart tissues, especially in the MOE200 group compared to the EAM group. In addition, MOEs induced a significant decrease of prooxidants production (O2 -, H2O2, and TBARS) and improved antioxidant defense system via increase in GSH, SOD, and CAT compared to EAM, with medium and high dose being more effective than low dose (p < 0.05). The present study suggests that ethanolic MOEs, especially in a 200 mg/kg dose, improve cardiac function and myocardial architecture, possibly via oxidative stress mitigation, thus preventing heart remodeling, development of dilated cardiomyopathy, and subsequent heart failure connected with EAM. MOEs might be considered as a potentially helpful adjuvant therapy in patients with autoimmune myocarditis.


Asunto(s)
Enfermedades Autoinmunes/tratamiento farmacológico , Melissa/química , Miocarditis/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratas
4.
Oxid Med Cell Longev ; 2022: 2249834, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35313642

RESUMEN

Psoriasis is defined as chronic, immune-mediated disease. Regardless of the development of new therapeutic approaches, the precise etiology of psoriasis remains unknown and speculative. The aim of this review was to systematize the results of previous research on the role of oxidative stress and aberrant immune response in the pathogenesis of psoriasis, as well as the impact of certain therapeutic modalities on the oxidative status in patients with psoriasis. Complex immune pathways of both the innate and adaptive immune systems appear to be major pathomechanisms in the development of psoriasis. Oxidative stress represents another important contributor to the pathophysiology of disease, and the redox imbalance in psoriasis has been reported in skin cells and, systemically, in plasma and blood cells, and more recently, also in saliva. Current immune model of psoriasis begins with activation of immune system in susceptible person by some environmental factor and loss of immune tolerance to psoriasis autoantigens. Increased production of IL-17 appears to be the most prominent role in psoriasis pathogenesis, while IL-23 is recognized as master regulator in psoriasis having a specific role in cross bridging the production of IL-17 by innate and acquired immunity. Other proinflammatory cytokines, including IFN-γ, TNF-α, IL-1ß, IL-6, IL-22, IL-26, IL-29, or IL-36, have also been reported to play important roles in the development of psoriasis. Oxidative stress can promote inflammation through several signaling pathways. The most noticeable and most powerful antioxidative effects exert various biologics compared to more convenient therapeutic modalities, such as methotrexate or phototherapy. The complex interaction of redox, immune, and inflammatory signaling pathways should be focused on further researches tackling the pathophysiology of psoriasis, while antioxidative supplementation could be the solution in some refractory cases of the disease.


Asunto(s)
Autoinmunidad , Estrés Oxidativo , Psoriasis , Citocinas/inmunología , Humanos , Psoriasis/tratamiento farmacológico , Psoriasis/inmunología , Saliva/metabolismo
5.
Naunyn Schmiedebergs Arch Pharmacol ; 395(4): 429-444, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35113200

RESUMEN

Cardiovascular diseases, and among them certainly myocardial infarction, remain leading cause of death worldwide. Diabetes increases risk of occurrence as well as adverse outcome of myocardial infarction. Conditioning maneuvers are the most attractive method for alleviating both the consequences of ischemia and reperfusion. Minocycline is a tetracycline derivative which exerts antioxidant, anti-inflammatory, and anti-apoptotic effects. The aim of this study was to assess the protective ability of preconditioning and postconditioning of isolated hearts from healthy and rats with experimentally induced type 2 diabetes with minocycline on functional recovery and redox status after ischemia and reperfusion. The hearts from healthy and diabetic rats were excised and retrogradely perfused according to the Langendorff technique. Using sensor in the left ventricle, the cardiodynamic parameters were recorded and in the samples of the coronary venous effluent oxidative stress biomarkers were analyzed. Minocycline was injected directly into the coronary vessels, in preconditioning 5 min before global ischemia, and in postconditioning during the first 5 min of reperfusion. Results of this study clearly show beneficial effects of minocycline applied both before ischemia and in the first minutes of reperfusion fashion in both healthy and diabetic rat hearts. The most prominent protective effect regarding oxidative stress is related to the decreased production of superoxide anion radical due postconditioning with minocycline in diabetic hearts. Cardiodynamic parameters were significantly improved in minocycline conditioned groups. Superoxide anion radical stands out as the most susceptible to changes induced by minocycline.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Daño por Reperfusión Miocárdica , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Corazón , Minociclina/farmacología , Minociclina/uso terapéutico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Ratas
6.
Immunol Lett ; 233: 57-67, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33753135

RESUMEN

Galectin-3 (Gal-3) is the only member of galectin family able to form pentamers and heterodimers with chemokines. Its presence in various cells and tissues suggests variety of regulatory functions in physiological conditions, but increasing body of evidence indicates involvement of Gal-3 in pathological cascades of many diseases. Gal-3 exerts different, sometimes opposite, effects in various disorders or in different phases of the same disease. These differences in action of Gal-3 are related to the localization of Gal-3 in the cell, types of receptors through which it acts, or the types of cells that secrete it. As a regulator of immune response and T-cell activity, Gal-3 appears to have important role in development of autoimmunity mediated by T cells. Absence of Gal-3 in C57Bl6 mice favors Th2 mediated inflammatory myocarditis but attenuate fibrosis. Recent data also indicate Gal-3 involvement in development atherosclerosis. In pathogenesis of diabetes type 1 and autoimmune components of diabetes type 2 Gal-3 may have detrimental or protective role depending on its intracellular or extracellular localization. Gal-3 mediates autoimmune hepatic damage through activation of T-cells or natural killer T cells. Gal-3 is an important mediator in neurodevelopment, neuropathology and behavior due to its expression both in neurons and glial cells. All together, assessing the role of Gal-3 in immunopathology and autoimmunity it could be concluded that it is an important participant in pathogenesis, as well as promising monitoring marker and therapeutic target.


Asunto(s)
Autoinmunidad , Susceptibilidad a Enfermedades , Galectina 3/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/terapia , Autoinmunidad/genética , Biomarcadores , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Descubrimiento de Drogas , Galectina 3/antagonistas & inhibidores , Galectina 3/química , Galectina 3/genética , Regulación de la Expresión Génica , Humanos , Ratones , Terapia Molecular Dirigida , Especificidad de Órganos , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
7.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33265949

RESUMEN

This study aimed to examine the effects of diallyl trisulfide (DATS), the most potent polysulfide derived from garlic, on metabolic syndrome and myocardial function in rats with metabolic syndrome (MetS). For that purpose, we used 36 male Wistar albino rats divided into control rats, rats with MetS and MetS rats treated with 40 mg/kg of DATS every second day for 3 weeks. In the first part, we studied the impact of DATS on MetS control and found that DATS significantly raised H2S, decreased homocysteine and glucose levels and enhanced lipid and antioxidative, while reducing prooxidative parameters. Additionally, this polysulfide improved cardiac function. In the second part, we investigated the impact of DATS on ex vivo induced ischemia/reperfusion (I/R) heart injury and found that DATS consumption significantly improved cardiodynamic parameters and prevented oxidative and histo-architectural variation in the heart. In addition, DATS significantly increased relative gene expression of eNOS, SOD-1 and -2, Bcl-2 and decreased relative gene expression of NF-κB, IL-17A, Bax, and caspases-3 and -9. Taken together, the data show that DATS can effectively mitigate MetS and have protective effects against ex vivo induced myocardial I/R injury in MetS rat.


Asunto(s)
Compuestos Alílicos/uso terapéutico , Cardiotónicos/uso terapéutico , Ajo/química , Síndrome Metabólico/tratamiento farmacológico , Sulfuros/uso terapéutico , Compuestos Alílicos/farmacología , Animales , Glucemia/metabolismo , Cardiotónicos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Pruebas de Función Cardíaca/efectos de los fármacos , Insulina/sangre , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/patología , Síndrome Metabólico/sangre , Síndrome Metabólico/fisiopatología , Miocardio/patología , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Sulfuros/farmacología
8.
Mol Cell Biochem ; 460(1-2): 151-164, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31280436

RESUMEN

Diallyl trisulfide (DATS) is distinguished as the most potent polysulfide isolated from garlic. The aim of our study was to investigate effects of oral administration of DATS on healthy and diabetic rats, with special attention on heart function. Rats were randomly divided into four groups: CTRL (healthy rats), DATS (healthy rats treated with DATS), DM (diabetic rats), DM + DATS (diabetic rats treated with DATS). DATS (40 mg/kg of body weight) was administered every other day for 3 weeks, at the end of which rats underwent echocardiography, glycemic measurement and redox status assessment. Isolated rat hearts were subjected to 30 min global ischemia and 60 min reperfusion, after which heart tissue was counterstain with hematoxylin and eosin and cardiac Troponin T staining (cTnT), while expression of Bax, B cell lymphoma 2 (Bcl-2), caspase-3, caspase-9 and superoxide dismutase-2 were examined in the left ventricle. DATS treatment significantly reduced blood glucose levels of diabetic rats, and improved cardiac function recovery, diminished oxidation status, attenuated cardiac remodeling and inhibited myocardial apoptosis in healthy and diabetic rats. DATS treatment causes promising cardioprotective effects on ex vivo-induced ischemia/reperfusion (I/R) injury in diabetic and healthy rat heart probably mediated by inhibited myocardial apoptosis. Moreover, appropriate DATS consumption may provide potential co-therapy or prevention of hyperglycemia and various cardiac complications in rats with DM.


Asunto(s)
Compuestos Alílicos/uso terapéutico , Cardiotónicos/uso terapéutico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Daño por Reperfusión/complicaciones , Daño por Reperfusión/tratamiento farmacológico , Sulfuros/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Cardiotónicos/farmacología , Diabetes Mellitus Experimental/fisiopatología , Masculino , Miocardio/patología , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Daño por Reperfusión/fisiopatología
9.
Gen Physiol Biophys ; 37(5): 515-525, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30307402

RESUMEN

The therapeutic use of cisplatin for the treatment of solid tumours is associated with organ toxicity. Amongst those, the cardiotoxicity is an occasional but very serious and severe side effect. To prevent or reduce these negative effects, many cisplatin analogues have been synthesized and evaluated in terms of being a less toxic and more effective agent. In present study, we examined the effects of cisplatin and its three analogues in the isolated rat heart to determine whether changes in the structure of the platinum complexes (changing of carrier ligands - ethylenediamine; 1,2-diaminocyclohexane; 2,2':6',2''-terpyridine) can influence their cardiotoxic effects. The results of our research indicate that the introduction of aromatic rings in the structure of the platinum complexes has a negative influence on the heart function. Conversely, the other two examined complexes had less negative effects on heart function compared to cisplatin. Our findings may be of interest for a possible synthetic strategy of introducing a carrier ligand that will exert a less cardiotoxic effect.


Asunto(s)
Cisplatino/análogos & derivados , Cisplatino/efectos adversos , Circulación Coronaria/efectos de los fármacos , Corazón/efectos de los fármacos , Corazón/fisiología , Perfusión , Animales , Relación Dosis-Respuesta a Droga , Hemodinámica/efectos de los fármacos , Masculino , Ratas , Ratas Wistar
10.
Oxid Med Cell Longev ; 2018: 5979721, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30116485

RESUMEN

This investigation is aimed at examining the effects of pharmacological PostC with potassium cyanide (KCN) on functional recovery, gene expression, cytochrome c expression, and redox status of isolated rat hearts. Rats were divided into the control and KCN groups. The hearts of male Wistar albino rats were retrogradely perfused according to the Langendorff technique at a constant perfusion pressure of 70 cmH2O. After stabilisation, control hearts were subjected to global ischemia (5 minutes), followed by reperfusion (5 minutes), while experimental hearts underwent global ischemia (5 minutes) followed by 5 minutes of reperfusion with 10 µmol/L KCN. The following parameters of heart function were measured: maximum and minimum rates of pressure development, systolic and diastolic left ventricular pressure, heart rate, and coronary flow. Levels of superoxide anion radical, hydrogen peroxide, nitrites, and index of lipid peroxidation (measured as thiobarbituric acid-reactive substances) were measured in coronary venous effluent, and activity of catalase was determined in heart tissue. Expression of Bax, Bcl-2, SOD-1, SOD-2, and cytochrome c was studied as well. It was shown that expression of Bax, Bcl-2, and SOD-2 genes did not significantly differ between groups, while expression of SOD-1 gene and cytochrome c was lower in the KCN group. Our results demonstrated that KCN improved the recovery of myocardial contractility and systolic and diastolic function, enhanced catalase activity, and diminished generation of prooxidants. However, all possible mechanisms and potential adverse effects of KCN should be further examined in the future.


Asunto(s)
Corazón/efectos de los fármacos , Isquemia/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Cianuro de Potasio/uso terapéutico , Animales , Humanos , Masculino , Cianuro de Potasio/farmacología , Ratas , Ratas Wistar
11.
Can J Physiol Pharmacol ; 96(10): 1040-1049, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30067069

RESUMEN

The aim of this study was to assess the impact of atorvastatin and simvastatin on myocardial contractility during the different degrees of hyperhomocysteinemia (HHcy) in rats. Study was conducted on adult male Wistar albino rats (n = 90; 4 weeks old; 100 ± 15 g body mass) in which HHcy was achieved by dietary manipulation. Animals were exposed to pharmacology treatment with atorvastatin in dose of 3 mg/kg per day i.p. or simvastatin in dose of 5 mg/kg per day i.p. at the same time every day, according to equivalent therapeutic doses of these statins (10 mg atorvastatin = 20 mg simvastatin). After the dietary manipulation and pharmacological treatment and confirmation of HHcy, all animals were sacrificed, hearts were isolated, and cardiac function was tested according to the Langendorff technique. Size of recovery of maximum rate of left ventricular development (dp/dtmax), minimum rate of left ventricular development (dp/dtmin), systolic left ventricular development, diastolic left ventricular development, heart rate, and coronary flow at the 40, 60, 80, 100, and 120 cmH2O coronary perfusion pressure were measured in state of physiological condition (homocysteine less than 15 µmol/L), mild HHcy, and moderate HHcy. Atorvastatin treatment significantly attenuated homocysteine-induced impairment of myocyte contractility and dominantly decreased dp/dtmax, dp/dtmin, and heart rate and induced greater changes in systolic left ventricular development compared with simvastatin. Treatment with atorvastatin seems able to revert systolic abnormalities and improve contractility during the different degrees of HHcy.


Asunto(s)
Atorvastatina/farmacología , Corazón/efectos de los fármacos , Corazón/fisiopatología , Hiperhomocisteinemia/fisiopatología , Simvastatina/farmacología , Animales , Homocisteína/metabolismo , Hiperhomocisteinemia/metabolismo , Masculino , Ratas , Ratas Wistar , Recuperación de la Función/efectos de los fármacos
12.
Mol Cell Biochem ; 439(1-2): 19-33, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28766171

RESUMEN

Drug-induced oxidative stress can occur in numerous tissues and organ systems (liver, kidney, ear, nervous system, and cardiovascular system). Cancer therapy with cisplatin is associated with side effects to which oxidative stress may contribute. We have compared the influences of cisplatin (reference compound) and its' analogues (dichloro(1,2-diaminocyclohexane)platinum(II) and chloro(2,2':6',2″-terpyridine)platinum(II)) in a model of isolated rat heart using the Langendorff technique. The production of oxidative stress biomarkers, antioxidant enzymes, myocardial damage, and expression of Bax, OH-1, and SODs were studied. Cisplatin and the analogues were perfused at concentration of 10-6 and 10-5 M during 30 min. The results of this study showed that examined platinum complexes had different ability to induce oxidative stress of isolated perfused rat heart. Varying the carrier ligands, such as 1,2-diaminocyclohexane and 2,2':6',2″-terpyridine, related to amino ligands (cisplatin) directly influenced the strength to induce production of oxidative stress biomarkers. Introducing 2,2':6',2″-terpyridine ligands provoked the smallest changes in antioxidant enzymes activity, lipid peroxidation, and expression of heme oxygenase-1, that undoubtedly indicated that this complex had the lowest impact on redox status in heart tissue. These findings may be useful in synthesis of novel platinum analogues with lower potential for oxidative stress induction. However, the fact that platinum complexes could induce toxic effects in the heart by other mechanisms should be taken into the consideration.


Asunto(s)
Cisplatino/farmacología , Mitocondrias Cardíacas/metabolismo , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Masculino , Mitocondrias Cardíacas/patología , Miocardio/patología , Perfusión , Ratas , Ratas Wistar
13.
Can J Physiol Pharmacol ; 94(10): 1048-1057, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27322017

RESUMEN

Despite worldwide use of anabolic steroids in last decades, there is still contradictory information about their acute influence on myocardium. The aim of this study was to examine the acute effects of nandrolone decanoate (ND) on cardiodynamics and coronary flow in isolated rat heart. The hearts of male Wistar albino rats (n = 48, 12 per group, age 8 weeks, body mass 180-200 g) were excised and perfused according to the Langendorff technique at gradually increased coronary perfusion pressures (40-120 cmH2O). After the control sets of experiments, the hearts in different groups were perfused with different doses of ND (1, 10, or 100 µmol/L separately). Using a sensor placed in the left ventricle, we registered maximum and minimum rate of pressure development in the left ventricle (dP/dtmax and dP/dtmin), systolic and diastolic left ventricular pressure (SLVP and DLVP), and heart rate (HR). Coronary flow (CF) was measured flowmetrically. The results clearly show the depression in cardiac function caused by higher doses of ND. The highest concentration of ND (100 µmol/L) induced the most deleterious impact on the myocardial function and perfusion of the heart (coronary circulation), which could be of clinical significance.

14.
Gen Physiol Biophys ; 34(3): 301-10, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25816361

RESUMEN

The aim of research was to assess exercise-induced changes in mechanics of hearts isolated from rats, as well as time-course of those changes. Wistar rats (n = 42) were divided into control, moderately trained (swimming 1 hour, 5 days a week for 9 or 12 weeks) and strenuously trained (swimming 2, 3 and 4 times a day for an hour in weeks 10, 11 and 12, respectively) groups. After sacrificing, hearts (weight: 1480.82 ± 145.38 mg) were isolated and perfused on a Langendorff apparatus. Coronary perfusion pressure (CPP) was gradually increased (from 40 to 120 cm H(2)O) in order to establish coronary autoregulation. Parameters of cardiac contractility were recorded: maximum and minimum rate of change of pressure in the left ventricle (dp/dt max and dp/dt min), systolic and diastolic left ventricular pressure (SLVP and DLVP), heart rate (HR) and coronary flow (CF). Nine weeks of moderate exercise induced slight depression of coronary function (decrease of dp/dt max, dp/dt min, SLVP and DLVP), while 3 additional weeks of moderate training improved hearts function, but not to the extent that the strenuous training program did. The results of our study add evidence about beneficial effects of regular moderate exercise on heart, and furthermore, show that exercising frequently, if the intensity stays within moderate range, may not have detrimental effects on cardiodynamics.


Asunto(s)
Circulación Coronaria/fisiología , Frecuencia Cardíaca/fisiología , Contracción Miocárdica/fisiología , Esfuerzo Físico/fisiología , Natación/fisiología , Función Ventricular Izquierda/fisiología , Adaptación Fisiológica/fisiología , Animales , Tolerancia al Ejercicio/fisiología , Femenino , Ratas , Ratas Wistar
15.
Cardiovasc Toxicol ; 15(3): 261-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25404470

RESUMEN

We have compared the cardiotoxicity of five platinum complexes in a model of isolated rat heart using the Langendorff technique. These effects were assessed via coronary flow (CF) and cardiac functional parameters. cis-Diamminedichloroplatinum(II) (cisplatin, CDDP), dichloro-(1,2-diaminocyclohexane)platinum(II) (Pt((II))DACHCl2), dichloro-(ethylenediamine)platinum(II) (Pt((II))ENCl2), tetrachloro-(1,2-diaminocyclohexane)platinum(IV) (Pt((IV))DACHCl4) and tetrachloro-(ethylenediamine)platinum(IV) (Pt((II))ENCl4) were perfused at increasing concentrations of 10(-8), 10(-7), 10(-6), 10(-5) and 10(-4) M during 30 min. In this paper, we report that cisplatin-induced dose-dependent effects on cardiac contractility and coronary flow both manifested as decrease in cardiac contractile force (dP/dt)max, heart rate and significant reduction in CF. Pt((II))ENCl2, Pt((IV))ENCl2 and Pt((IV))DACHCl4 did induce dose-dependent response only in case of CF. Our results could be also important for better understanding dose-dependent side effects of potential metal-based anticancer drugs.


Asunto(s)
Antineoplásicos/toxicidad , Cardiotoxicidad/fisiopatología , Cisplatino/toxicidad , Corazón/efectos de los fármacos , Corazón/fisiopatología , Compuestos de Platino/toxicidad , Animales , Cardiotoxicidad/patología , Relación Dosis-Respuesta a Droga , Masculino , Técnicas de Cultivo de Órganos , Compuestos de Platino/química , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...