Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Food Sci Technol ; 60(3): 879-888, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36908345

RESUMEN

The present study focused on the effect of different drying temperatures (40, 50, 60 and 70 °C) and combination of pre-treatments: potassium metabisulphite (KMS), potassium metabisulphite + Citric acid + blanching (KCB)] on functional, thermo-pasting and antioxidant properties of elephant foot yam (EFY) powder. Drying temperature and pretreatment reduces the water and oil absorption capacity, and the highest values were 2.34 g/g and 1.19 g/g for drying at 40 °C for the untreated sample, respectively. KMS pretreatment enhanced the bulk density, foaming capacity, emulsion capacity, and emulsion stability with an increase in drying temperature. Pasting temperature and viscosity decreased with an increase in drying temperature, and the maximum was observed at 40 °C for KMS pretreatment. Blanching increases the gelatinization temperature resulting in higher mid-and end-temperatures for KCB pretreatment. The antioxidant properties decreased with an increase in the drying temperature and were found to be minimal in the case of KCB treated samples.

2.
3 Biotech ; 8(8): 367, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30105192

RESUMEN

Pyrethrins are effective food-grade bio-pesticides obtained from the flowers of Chrysanthemum cinerariaefolium and this crop cannot be cultivated widely in India due to its specific agro-climatic requirement. Hence pyrethrins are mostly imported from Kenya. Therefore, the present study aims to develop a process for augmentation of pyrethrin contents in C. cinerariaefolium callus and establish the correlation between early knockdown effects through docking on grain storage insect. In vitro seedlings were used as explants to induce callus on MS medium with different concentrations of auxins and cytokinins. Pyrethrin extracted from the callus was estimated by RP-HPLC. In callus, total pyrethrin was found to be 17.5 µg/g, which is higher than that found in natural flowers of certain Pyrethrum cultivars. The concentrations of cinerin II, pyrethrin II and jasmoline II were quite high in callus grown on solid medium. Bio-efficacy of pyrethrum extracts of flower and callus on insect Tribolium sp., showed higher repellency and early knock-down effect when compared with pure compound pestanal. Further, the rapid knockdown effect of all pyrethrins components was established by molecular docking studies targeting NavMS Sodium Channel Pore receptor docking followed by multiple ligands simultaneous docking, performed to investigate the concurrent binding of different combinations of pyrethrin. Among the six pyrethrin components, the pyrethrin I and II were found to be a more efficient, binding more firmly to the target, exhibiting higher possibilities of insecticidal effect by an early knockdown mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...