Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 17: 455-464, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32226796

RESUMEN

Conditioning chemotherapy is used to deplete hematopoietic stem cells in the recipient's marrow, facilitating donor cell engraftment. Although effective, a major issue with chemotherapy is the systemic genotoxicity that increases the risk for secondary malignancies. Antibody conjugates targeting hematopoietic cells are an emerging non-genotoxic method of opening the marrow niche and promoting engraftment of transplanted cells while maintaining intact marrow cellularity. Specifically, this platform would be useful in diseases associated with DNA damage or cancer predisposition, such as dyskeratosis congenita, Schwachman-Diamond syndrome, and Fanconi anemia (FA). Our approach utilizes antibody-drug conjugates (ADC) as an alternative conditioning regimen in an FA mouse model of autologous transplantation. Antibodies targeting either CD45 or CD117 were conjugated to saporin (SAP), a ribosomal toxin. FANCA knockout mice were conditioned with either CD45-SAP or CD117-SAP prior to receiving whole marrow from a heterozygous healthy donor. Bone marrow and peripheral blood analysis revealed equivalent levels of donor engraftment, with minimal toxicity in ADC-treated groups as compared with cyclophosphamide-treated controls. Our findings suggest ADCs may be an effective conditioning strategy in stem cell transplantation not only for diseases where traditional chemotherapy is not tolerated, but also more broadly for the field of blood and marrow transplantation.

2.
Biol Blood Marrow Transplant ; 26(7): 1332-1341, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32234377

RESUMEN

Allogeneic hematopoietic cell transplant (HCT) is often the only curative therapy for patients with nonmalignant diseases; however, many patients do not have an HLA-matched donor. Historically, poor survival has been seen after HLA-haploidentical HCT because of poor immune reconstitution, increased infections, graft-versus-host disease (GVHD), and graft failure. Encouraging results have been reported using a nonmyeloablative T cell-replete HLA-haploidentical transplant approach in patients with hematologic malignancies. Here we report the outcomes of 23 patients with various nonmalignant diseases using a similar approach. Patients received HLA-haploidentical bone marrow (n = 17) or granulocyte colony-stimulating factor-mobilized peripheral blood stem cell (n = 6) grafts after conditioning with cyclophosphamide 50 mg/kg, fludarabine 150 mg/m2, and 2 or 4 Gy total body irradiation. Postgrafting immunosuppression consisted of cyclophosphamide, mycophenolate mofetil, tacrolimus, ± sirolimus. Median patient age at HCT was 10.8 years. Day 100 transplant-related mortality (TRM) was 0%. Two patients died at later time points, 1 from intracranial hemorrhage/disseminated fungal infection in the setting of graft failure and 1 from infection/GVHD. The estimated probabilities of grades II to IV and III to IV acute GVHD at day 100 and 2-year National Institutes of Health consensus chronic GVHD were 78%, 26%, and 42%, respectively. With a median follow-up of 2.5 years, the 2-year overall and event-free rates of survival were 91% and 78%, respectively. These results are encouraging and demonstrate favorable disease-specific lineage engraftment with low TRM in patients with nonmalignant diseases using nonmyeloablative conditioning followed by T cell-replete HLA-haploidentical grafts. However, additional strategies are needed for GVHD prevention to make this a viable treatment approach for patients with nonmalignant diseases.


Asunto(s)
Enfermedad Injerto contra Huésped , Neoplasias Hematológicas , Trasplante de Células Madre Hematopoyéticas , Ciclofosfamida/uso terapéutico , Enfermedad Injerto contra Huésped/terapia , Antígenos HLA , Haplotipos , Neoplasias Hematológicas/terapia , Humanos , Acondicionamiento Pretrasplante , Trasplante Homólogo
3.
Mol Ther Methods Clin Dev ; 3: 16063, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27738644

RESUMEN

Hemophilia A and B are coagulation disorders resulting from the loss of functional coagulation factor VIII (FVIII) or factor IX proteins, respectively. Gene therapy for hemophilia with adeno-associated virus vectors has shown efficacy in hemophilia B patients. Although hemophilia A patients are more prevalent, the development of therapeutic adeno-associated virus vectors has been impeded by the size of the F8 cDNA and impaired secretion of FVIII protein. Further, it has been reported that over-expression of the FVIII protein induces endoplasmic reticulum stress and activates the unfolded protein response pathway both in vitro and in hepatocytes in vivo, presumably due to retention of misfolded FVIII protein within the endoplasmic reticulum. Engineering of the F8 transgene, including removal of the B domain (BDD-FVIII) and codon optimization, now allows for the generation of adeno-associated virus vectors capable of expressing therapeutic levels of FVIII. Here we sought to determine if the risks of inducing the unfolded protein response in murine hepatocytes extend to adeno-associated virus gene transfer. Although our data show a mild activation of unfolded protein response markers following F8 gene delivery at a certain vector dose in C57BL/6 mice, it was not augmented upon further elevated dosing, did not induce liver pathology or apoptosis, and did not impact FVIII immunogenicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...