Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tomography ; 9(2): 810-828, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37104137

RESUMEN

Co-clinical trials are the concurrent or sequential evaluation of therapeutics in both patients clinically and patient-derived xenografts (PDX) pre-clinically, in a manner designed to match the pharmacokinetics and pharmacodynamics of the agent(s) used. The primary goal is to determine the degree to which PDX cohort responses recapitulate patient cohort responses at the phenotypic and molecular levels, such that pre-clinical and clinical trials can inform one another. A major issue is how to manage, integrate, and analyze the abundance of data generated across both spatial and temporal scales, as well as across species. To address this issue, we are developing MIRACCL (molecular and imaging response analysis of co-clinical trials), a web-based analytical tool. For prototyping, we simulated data for a co-clinical trial in "triple-negative" breast cancer (TNBC) by pairing pre- (T0) and on-treatment (T1) magnetic resonance imaging (MRI) from the I-SPY2 trial, as well as PDX-based T0 and T1 MRI. Baseline (T0) and on-treatment (T1) RNA expression data were also simulated for TNBC and PDX. Image features derived from both datasets were cross-referenced to omic data to evaluate MIRACCL functionality for correlating and displaying MRI-based changes in tumor size, vascularity, and cellularity with changes in mRNA expression as a function of treatment.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Imagen por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador
2.
NPJ Breast Cancer ; 8(1): 104, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36088362

RESUMEN

TNBC is a heterogeneous subtype of breast cancer, and only a subset of TNBC can be established as PDXs. Here, we show that there is an engraftment bias toward TNBC with low levels of immune cell infiltration. Additionally, TNBC that failed to engraft show gene expression consistent with a cancer-promoting immunological state, leading us to hypothesize that the immunological state of the tumor and possibly the state of the immune system of the host may be essential for engraftment.

3.
Oncogene ; 40(5): 964-979, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33299122

RESUMEN

It is well established that a subset of cells within primary breast cancers can undergo an epithelial-to-mesenchymal transition (EMT), although the role of EMT in metastasis remains controversial. We previously demonstrated that breast cancer cells that had undergone an oncogenic EMT could increase metastasis of neighboring cancer cells via non-canonical paracrine-mediated activation of GLI activity that is dependent on SIX1 expression in the EMT cancer cells. However, the mechanism by which these SIX1-expressing EMT cells activate GLI signaling remained unclear. In this study, we demonstrate a novel mechanism for activation of GLI-mediated signaling in epithelial breast tumor cells via EMT cell-induced production and secretion of VEGF-C. We show that VEGF-C, secreted by breast cancer cells that have undergone an EMT, promotes paracrine-mediated increases in proliferation, migration, and invasion of epithelial breast cancer cells, via non-canonical activation of GLI-signaling. We further show that the aggressive phenotypes, including metastasis, imparted by EMT cells on adjacent epithelial cancer cells can be disrupted by either inhibiting VEGF-C in EMT cells or by knocking down NRP2, a receptor which interacts with VEGF-C, in neighboring epithelial cancer cells. Interrogation of TCGA and GEO public datasets supports the relevance of this pathway in human breast cancer, demonstrating that VEGF-C strongly correlates with activation of Hedgehog signaling and EMT in the human disease. Our study suggests that the VEGF-C/NRP2/GLI axis is a novel and conserved paracrine means by which EMT cells enhance metastasis, and provides potential targets for therapeutic intervention in this heterogeneous disease.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Homeodominio/genética , Neuropilina-2/genética , Factor C de Crecimiento Endotelial Vascular/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Proteínas Hedgehog/genética , Humanos , Metástasis de la Neoplasia , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...