Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurosci Res ; 186: 51-58, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36206953

RESUMEN

Sleep stage-specific intervention is widely used to elucidate the functions of sleep and their underlying mechanisms. For this intervention, it is imperative to accurately classify rapid-eye-movement (REM) sleep. However, the proof of fully automatic real-time REM sleep classification in vivo has not been obtained in mice. Here, we report the in vivo implementation of a system that classifies sleep stages in real-time from a single-channel electroencephalogram (EEG). It enabled REM sleep-specific intervention with 90 % sensitivity and 86 % precision without prior configuration to each mouse. We further derived systems capable of classification with higher frequency sampling and time resolution. This attach-and-go sleep staging system provides a fully automatic accurate and scalable tool for investigating the functions of sleep.


Asunto(s)
Fases del Sueño , Sueño REM , Animales , Ratones , Sueño , Electroencefalografía
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2997-3003, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34891875

RESUMEN

We developed Carignan, a real-time calcium imaging software that can automatically detect activity patterns of neurons. Carignan can activate an external device when synchronized neural activity is detected in calcium imaging obtained by a one-photon (1p) miniscope. Combined with optogenetics, our software enables closed-loop experiments for investigating functions of specific types of neurons in the brain. In addition to making existing pattern detection algorithms run in real-time seamlessly, we developed a new classification module that distinguishes neurons from false-positives using deep learning. We used a combination of convolutional and recurrent neural networks to incorporate both spatial and temporal features in activity patterns. Our method performed better than existing neuron detection methods for false-positive neuron detection in terms of the F1 score. Using Carignan, experimenters can activate or suppress a group of neurons when specific neural activity is observed. Because the system uses a 1p miniscope, it can be used on the brain of a freely-moving animal, making it applicable to a wide range of experimental paradigms.


Asunto(s)
Calcio , Neuronas , Animales , Encéfalo/diagnóstico por imagen , Optogenética , Programas Informáticos
3.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33808976

RESUMEN

The mammalian hippocampal dentate gyrus is a unique memory circuit in which a subset of neurons is continuously generated throughout the lifespan. Previous studies have shown that the dentate gyrus neuronal population can hold fear memory traces (i.e., engrams) and that adult-born neurons (ABNs) support this process. However, it is unclear whether ABNs themselves hold fear memory traces. Therefore, we analyzed ABN activity at a population level across a fear conditioning paradigm. We found that fear learning did not recruit a distinct ABN population. In sharp contrast, a completely different ABN population was recruited during fear memory retrieval. We further provide evidence that ABN population activity remaps over time during the consolidation period. These results suggest that ABNs support the establishment of a fear memory trace in a different manner to directly holding the memory. Moreover, this activity remapping process in ABNs may support the segregation of memories formed at different times. These results provide new insight into the role of adult neurogenesis in the mammalian memory system.


Asunto(s)
Consolidación de la Memoria/fisiología , Memoria/fisiología , Neurogénesis/genética , Neuronas/metabolismo , Animales , Condicionamiento Psicológico , Giro Dentado/metabolismo , Giro Dentado/fisiología , Miedo/fisiología , Hipocampo/metabolismo , Hipocampo/fisiología , Humanos , Aprendizaje/fisiología , Ratones , Neuronas/fisiología
4.
STAR Protoc ; 2(1): 100238, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33458703

RESUMEN

Adult-born neurons (ABNs) in the dentate gyrus bestow unique cellular plasticity to the mammalian brain. We recently found that the activity of ABNs during sleep is necessary for memory consolidation. Here, we describe our method for Ca2+ imaging of ABN activity using a miniaturized fluorescent microscope and sleep recordings. As preparatory surgery and post-recording data processing can be major obstacles, we provide detailed descriptions and problem-solving tips. For complete details on the use and execution of this protocol, please refer to Kumar et al. (2020).


Asunto(s)
Señalización del Calcio , Giro Dentado/metabolismo , Hipocampo/metabolismo , Microscopía Intravital , Neuronas/metabolismo , Animales , Ratones , Microscopía Fluorescente
5.
Neuron ; 107(3): 552-565.e10, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32502462

RESUMEN

The occurrence of dreaming during rapid eye movement (REM) sleep prompts interest in the role of REM sleep in hippocampal-dependent episodic memory. Within the mammalian hippocampus, the dentate gyrus (DG) has the unique characteristic of exhibiting neurogenesis persisting into adulthood. Despite their small numbers and sparse activity, adult-born neurons (ABNs) in the DG play critical roles in memory; however, their memory function during sleep is unknown. Here, we investigate whether young ABN activity contributes to memory consolidation during sleep using Ca2+ imaging in freely moving mice. We found that contextual fear learning recruits a population of young ABNs that are reactivated during subsequent REM sleep against a backdrop of overall reduced ABN activity. Optogenetic silencing of this sparse ABN activity during REM sleep alters the structural remodeling of spines on ABN dendrites and impairs memory consolidation. These findings provide a causal link between ABN activity during REM sleep and memory consolidation.


Asunto(s)
Condicionamiento Psicológico , Giro Dentado/fisiología , Consolidación de la Memoria/fisiología , Neuronas/fisiología , Sueño REM/fisiología , Animales , Calcio/metabolismo , Giro Dentado/citología , Electroencefalografía , Electromiografía , Miedo , Hipocampo , Aprendizaje , Ratones , Neurogénesis , Optogenética , Ritmo Teta
6.
Biochem Biophys Res Commun ; 517(3): 520-524, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31376934

RESUMEN

Simultaneous imaging and manipulation of a genetically defined neuronal population can provide a causal link between its activity and function. Here, we designed a miniaturized microscope (or 'miniscope') that allows fluorescence imaging and optogenetic manipulation at the cellular level in freely behaving animals. This miniscope has an integrated optical connector that accepts any combination of external light sources, allowing flexibility in the choice of sensors and manipulators. Moreover, due to its simple structure and use of open source software, the miniscope is easy to build and modify. Using this miniscope, we demonstrate the optogenetic silencing of hippocampal CA1 neurons using two laser light sources-one stimulating a calcium sensor (i.e., jGCaAMP7c) and the other serving as an optogenetic silencer (i.e., Jaws). This new miniscope can contribute to efforts to determine causal relationships between neuronal network dynamics and animal behavior.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Microscopía/instrumentación , Red Nerviosa/metabolismo , Neuroimagen/métodos , Neuronas/metabolismo , Optogenética/métodos , Animales , Conducta Animal/fisiología , Región CA1 Hipocampal/ultraestructura , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Expresión Génica , Genes Reporteros , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inyecciones Intraventriculares , Luz , Ratones , Microscopía/métodos , Red Nerviosa/ultraestructura , Neuroimagen/instrumentación , Neuronas/ultraestructura , Imagen Óptica/instrumentación , Imagen Óptica/métodos , Optogenética/instrumentación , Rodopsina/genética , Rodopsina/metabolismo
7.
Neural Regen Res ; 14(1): 20-23, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30531064

RESUMEN

In anticipation of the massive burden of neurodegenerative disease within super-aged societies, great efforts have been made to utilize neural stem and progenitor cells for regenerative medicine. The capacity of intrinsic neural stem and progenitor cells to regenerate damaged brain tissue remains unclear, due in part to the lack of knowledge about how these newly born neurons integrate into functional circuitry. As sizable integration of adult-born neurons naturally occurs in the dentate gyrus region of the hippocampus, clarifying the mechanisms of this process could provide insights for applying neural stem and progenitor cells in clinical settings. There is convincing evidence of functional correlations between adult-born neurons and memory consolidation and sleep; therefore, we describe some new advances that were left untouched in our recent review.

8.
Stem Cells ; 36(7): 969-976, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29484772

RESUMEN

Neural stem and progenitor cells continue to generate new neurons in particular regions of the brain during adulthood. One of these neurogenic regions is the dentate gyrus (DG) of the hippocampus, which plays an important role in cognition and emotion. By exploiting this innate neuronal regeneration mechanism in the DG, new technologies have the potential to promote resistance to or recovery from brain dysfunction or degeneration. However, a deeper understanding of how adult DG neurogenesis is regulated by factors such as sleep and epigenetic modifications of gene expression could lead to further breakthroughs in the clinical application of neural stem and progenitor cells. In this review, we discuss the functions of adult-born DG neurons, describe the epigenetic regulation of adult DG neurogenesis, identify overlaps in how sleep and epigenetic modifications impact adult DG neurogenesis and memory consolidation, and suggest ways of using sleep or epigenetic interventions as therapies for neurodegenerative and psychiatric disorders. By knitting together separate strands of the literature, we hope to trigger new insights into how the functions of adult-generated neurons are directed by interactions between sleep-related neural processes and epigenetic mechanisms to facilitate novel approaches to preventing and treating brain disorders such as depression, post-traumatic stress disorder, and Alzheimer's disease. Stem Cells 2018;36:969-976.


Asunto(s)
Cognición/fisiología , Emociones/fisiología , Epigénesis Genética/genética , Hipocampo/fisiopatología , Neurogénesis/genética , Sueño/genética , Animales , Humanos , Ratones
9.
J Biomed Res ; 31(2): 143-153, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28808196

RESUMEN

Noise has been regarded as an environmental/occupational stressor that causes damages to both auditory and non-auditory organs. Prolonged exposure to these mediators of stress has often resulted in detrimental effect, where oxidative/nitrosative stress plays a major role. Hence, it would be appropriate to examine the possible role of free radicals in brain discrete regions and the "antioxidants" mediated response of S. dulcis. Animals were subjected to noise stress for 15 days (100 dB/4 hours/day) and estimation of endogenous free radical and antioxidant activity were carried out on brain discrete regions (the cerebral cortex, cerebellum, brainstem, striatum, hippocampus and hypothalamus). The result showed that exposure to noise could alleviate endogenous free radical generation and altered antioxidant status in brain discrete regions when compared to that of the control groups. This alleviated free radical generation (H2O2 and NO) is well supported by an upregulated protein expression on immunohistochemistry of both iNOS and nNOS in the cerebral cortex on exposure to noise stress. These findings suggest that increased free radical generation and altered anti-oxidative status can cause redox imbalance in the brain discrete regions. However, free radical scavenging activity of the plant was evident as the noise exposed group treated with S. dulcis[200 mg/(kg·b·w)] displayed a therapeutic effect by decreasing the free radical level and regulate the anti-oxidative status to that of control animals. Hence, it can be concluded that the efficacy of S. dulcis could be attributed to its free radical scavenging activity and anti-oxidative property.

10.
J Ayurveda Integr Med ; 8(1): 13-19, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28161157

RESUMEN

BACKGROUND: Noise acts as a stressor and is reported to have impact on individual health depending on nature, type, intensity and perception. Modern medicine has no effective drugs or cure to prevent its consequences. Being an environmental stressor noise cannot be avoided; instead minimizing its exposure or consuming anti-stressor and adaptogens from plants can be considered. OBJECTIVES: The present study was carried out to evaluate the anti-stressor, adaptogen and immunostimulatory activity of Scoparia dulcis against noise-induced stress in Wistar rat models. MATERIAL AND METHODS: Noise stress in rats was created by broadband white noise generator, 100 dB A/4 h daily/15 days and S. dulcis (200 mg/kg b.w.) was administered orally. 8 groups of rats were used consisting of 6 animals each; 4 groups for unimmunized and 4 groups for immunized. For immunization, sheep red blood cells (5 × 109 cells/ml) were injected intraperitoneally. RESULTS: Sub-acute noise exposed rats showed a significant increase in corticosterone and IL-4 levels in both immunized and unimmunized rats whereas lymphocytes, antibody titration, soluble immune complex, IL-4 showed a marked increase with a significant decrease in IL-2, TNF-α, IFN-γ cytokines only in unimmunized rats. Immunized noise exposed rats presented increased leukocyte migration index and decreased foot pad thickness, IL-2, TNF-α, IFN-γ with no changes in the lymphocytes. CONCLUSION: S. dulcis (SD) has normalized and prevented the noise induced changes in cell-mediated and humoral immunity and it could be the presence of anti-stressor and immuno stimulant activity of the plant.

11.
Biomed Pharmacother ; 86: 475-481, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28012927

RESUMEN

Noise pollution is one of the most widespread and fast growing environmental and occupational menaces in the modern era. Exposure to noise above 100dB is not adaptable through the brain homeostatic mechanism. Yet, the detrimental effects of noise have often been ignored. Developing reliable animal models to understand the neurobiology of noise stress and advance our research in the field of medicine to impede this growing stressor is needed. In this study experimental animals were divided into four groups, (i) Control and (ii) S. dulcis extract (200mg/kgbw) treated control group. (iii) To mimic the influence of noise, animals in this group were exposed to noise stress (100dB/4h/day) for 15days and finally, (iv) Noise exposed treated with S. dulcis extract (200mg/kgbw) group. Rota-rod and narrow beam performance results showed impaired motor co-ordination in noise exposed group on both 1st and 15th day when compared to controls. This impaired motor function on exposure to noise could be attributed to the altered norepinephrine, dopamine and serotonin levels in both the striatum and cerebellum. Moreover, the motor impaired associated changes could also be attributed to upregulated nNOS and iNOS protein expression in the cerebellum resulting in increased nitric oxide radical production. This increased reactive free radicals species can initiate lipid peroxidation mediated changes in the cerebellar Purkinje cells, which is responsible for initiating inhibitory motor response and ultimately leading to impaired motor co-ordination. Treatment with S. dulcis extract (200mg/kgbw) could control motor impairment and regulate neurotransmitter level as that of control groups when compared to noise exposed group. One key aspect of therapeutic efficacy of the plant could have resulted due to attenuated lipid peroxidation mediated damages on the cerebellar Purkinje cells thereby regulating motor impairment. Thus, targeting the antioxidant and free radicals scavenging properties of the plant could serve as a potential therapeutic to combat this environmental stressor.


Asunto(s)
Actividad Motora/efectos de los fármacos , Neurotransmisores/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ruido/efectos adversos , Extractos Vegetales/farmacología , Scoparia/química , Animales , Antioxidantes/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Óxido Nítrico/metabolismo , Células de Purkinje/efectos de los fármacos , Células de Purkinje/metabolismo , Ratas , Ratas Wistar
12.
J Pharm Anal ; 6(2): 125-131, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29403972

RESUMEN

The objective of this study was to evaluate the free radical scavenging potential and high performance thin layer chromatography (HPTLC) fingerprinting of Indigofera tinctoria (I. tinctoria). Phytochemical analysis was carried out using standard methods, and free radical scavenging activity of the plant was determined using 2,2-diphenyl-1-picrylhydrazy (DPPH), nitric oxide (NO) and superoxide anion ([Formula: see text]) radical scavenging capacities. HPTLC plate was kept in CAMAG TLC Scanner 3 and the Rf values at fingerprint data were recorded by WINCATS software. Aqueous extract of I. tinctoria reliably showed the total phenolics (267.2±2.42 mg/g), flavonoids (75.43±3.36 mg/g) and antioxidants (349.11±8.04 mg/g). The extract was found to have DPPH (52.08%), NO (23.12%) and [Formula: see text] (26.79%) scavenging activities at the concentration of 250 µg/mL and the results were statistically significant compared with ascorbic acid standard (p<0.05). HPTLC results confirmed that the extract contained several potential active components such as phenols, flavonoids, saponins and terpenoids as the slides revealed multi-colored bands of varying intensities. This study confirmed that the plant had multipotential antioxidant and free radicals scavenging activities.

13.
Nat Prod Res ; 29(18): 1757-60, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25573588

RESUMEN

This study evaluates the larvicidal activity of Scoparia dulcis aqueous extract against dengue vector and determines its major chemical components. The extract was tested at various concentrations ranging from 0.1 to 2 mg/mL against Aedes aegypti larvae. The extracts displayed significant larvicidal efficacy against Ae. aegypt species after 24 h exposure revealing LC50 of 3.3835 (mg/mL) and LC90 of 5.7578 (mg/mL). Finger printing profile carried out by CAMAG automatic TLC sample applicator programmed through WIN CATS software revealed peaks with different Rf values for three different volumes injected: 16, 15 and 18 peaks were spotted for 3, 6 and 9 µL, respectively. Ascending order of Rf values was also ascertained for each peak recorded. This study clearly signifies that S. dulcis extract contains numerous compounds that are known to have larvicidal properties which clearly substantiates its efficacy on Ae. aegypti larvae.


Asunto(s)
Aedes , Insecticidas/química , Extractos Vegetales/química , Scoparia/química , Animales , Larva , Hojas de la Planta/química
14.
Theranostics ; 3(12): 930-42, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24396504

RESUMEN

MicroRNAs (miRNAs), an abundant class of ~22-nucleotide non-coding RNAs, regulate the expression of genes at post transcriptional level. MiRNAs are important regulators of eukaryotic gene expression and therefore implicated in a wide range of biological processes. The miRNA-related genetic alterations are possibly more implicated human diseases than currently appreciated. Genetic variants in miRNA target sites, called miRNA genes are identified to be associated with human diseases. This review discusses about the role of micro-RNA genes in various human diseases such as neurodegenerative disorders, cardio-vascular diseases, and metabolic disorders, and how they can be targeted as a new therapeutic tool in future with reference to drug discoveries/ development.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Medicina Molecular/métodos , Terapia Molecular Dirigida/métodos , Enfermedades Cardiovasculares/terapia , Humanos , Enfermedades Metabólicas/terapia , Enfermedades Neurodegenerativas/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...