Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Science ; 383(6690): eadl3962, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38547287

RESUMEN

Bacillus Calmette-Guérin (BCG) is a routinely used vaccine for protecting children against Mycobacterium tuberculosis that comprises attenuated Mycobacterium bovis. BCG can also be used to protect livestock against M. bovis; however, its effectiveness has not been quantified for this use. We performed a natural transmission experiment to directly estimate the rate of transmission to and from vaccinated and unvaccinated calves over a 1-year exposure period. The results show a higher indirect efficacy of BCG to reduce transmission from vaccinated animals that subsequently become infected [74%; 95% credible interval (CrI): 46 to 98%] compared with direct protection against infection (58%; 95% CrI: 34 to 73%) and an estimated total efficacy of 89% (95% CrI: 74 to 96%). A mechanistic transmission model of bovine tuberculosis (bTB) spread within the Ethiopian dairy sector was developed and showed how the prospects for elimination may be enabled by routine BCG vaccination of cattle.


Asunto(s)
Vacuna BCG , Erradicación de la Enfermedad , Mycobacterium bovis , Tuberculosis Bovina , Vacunación , Eficacia de las Vacunas , Animales , Bovinos , Vacuna BCG/administración & dosificación , Mycobacterium bovis/inmunología , Tuberculosis Bovina/prevención & control , Tuberculosis Bovina/transmisión , Vacunación/métodos , Vacunación/veterinaria , Erradicación de la Enfermedad/métodos
2.
BMC Vet Res ; 20(1): 65, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395846

RESUMEN

BACKGROUND: Bovine tuberculosis (bTB) is a chronic disease that results from infection with any member of the Mycobacterium tuberculosis complex. Infected animals are typically diagnosed with tuberculin-based intradermal skin tests according to World Organization of Animal Health which are presently in use. However, tuberculin is not suitable for use in BCG-vaccinated animals due to a high rate of false-positive reactions. Peptide-based defined skin test (DST) antigens have been identified using antigens (ESAT-6, CFP-10 and Rv3615c) which are absent from BCG, but their performance in buffaloes remains unknown. To assess the comparative performance of DST with the tuberculin-based single intradermal test (SIT) and the single intradermal comparative cervical test (SICCT), we screened 543 female buffaloes from 49 organized dairy farms in two districts of Haryana state in India. RESULTS: We found that 37 (7%), 4 (1%) and 18 (3%) buffaloes were reactors with the SIT, SICCT and DST tests, respectively. Of the 37 SIT reactors, four were positive with SICCT and 12 were positive with the DST. The results show that none of the animals tested positive with all three tests, and 6 DST positive animals were SIT negative. Together, a total of 43 animals were reactors with SIT, DST, or both, and the two assays showed moderate agreement (Cohen's Kappa 0.41; 95% Confidence Interval (CI): 0.23, 0.59). In contrast, only slight agreement (Cohen's Kappa 0.18; 95% CI: 0.02, 0.34) was observed between SIT and SICCT. Using a Bayesian latent class model, we estimated test specificities of 96.5% (95% CI, 92-99%), 99.7% (95% CI: 98-100%) and 99.0% (95% CI: 97-100%) for SIT, SICCT and DST, respectively, but considerably lower sensitivities of 58% (95% CI: 35-87%), 9% (95% CI: 3-21%), and 34% (95% CI: 18-55%) albeit with broad and overlapping credible intervals. CONCLUSION: Taken together, our investigation suggests that DST has a test specificity comparable with SICCT, and sensitivity intermediate between SIT and SICCT for the identification of buffaloes suspected of tuberculosis. Our study highlights an urgent need for future well-powered trials with detailed necropsy, with immunological and microbiological profiling of reactor and non-reactor animals to better define the underlying factors for the large observed discrepancies in assay performance, particularly between SIT and SICCT.


Asunto(s)
Bison , Enfermedades de los Bovinos , Mycobacterium bovis , Tuberculosis Bovina , Femenino , Animales , Bovinos , Tuberculosis Bovina/diagnóstico , Búfalos , Tuberculina , Teorema de Bayes , Vacuna BCG , Prueba de Tuberculina/veterinaria , Sensibilidad y Especificidad
3.
Sci Rep ; 14(1): 2600, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297023

RESUMEN

Bovine tuberculosis is an infectious disease of global significance that remains endemic in many countries. Mycobacterium bovis infection in cattle is characterized by a cell-mediated immune response (CMI) that precedes humoral responses, however the timing and trajectories of CMI and antibody responses determined by newer generation assays remain undefined. Here we used defined-antigen interferon-gamma release assays (IGRA) and an eleven-antigen multiplex ELISA (Enferplex TB test) alongside traditional tuberculin-based IGRA and IDEXX M. bovis antibody tests to assess immune trajectories following experimental M. bovis infection of cattle. The results show CMI responses developed as early as two-weeks post-infection, with all infected cattle testing positive three weeks post-infection. Interestingly, 6 of 8 infected animals were serologically positive with the Enferplex TB assay as early as 4 weeks post-infection. As expected, application of the tuberculin skin test enhanced subsequent serological reactivity. Infrequent M. bovis faecal shedding was observed but was uncorrelated with observed immune trajectories. Together, the results show that early antibody responses to M. bovis infection are detectable in some individuals and highlight an urgent need to identify biomarkers that better predict infection outcomes, particularly for application in low-and-middle income countries where test-and-slaughter based control methods are largely unfeasible.


Asunto(s)
Mycobacterium bovis , Tuberculosis Bovina , Humanos , Animales , Bovinos , Interferón gamma , Tuberculosis Bovina/diagnóstico , Prueba de Tuberculina/veterinaria , Inmunidad Celular
4.
PLoS One ; 18(3): e0283357, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36947560

RESUMEN

Zoonotic tuberculosis in humans is caused by infection with bacteria of the Mycobacterium tuberculosis complex acquired from animals, most commonly cattle. India has the highest burden of human tuberculosis in the world and any zoonotic risk posed by tuberculosis in bovines needs to be managed at the source of infection as a part of efforts to end human tuberculosis. Zoonotic tuberculosis in humans can be severe and is clinically indistinguishable from non-zoonotic tuberculosis. As a consequence, zoonotic tuberculosis remains under-recognised and the significance of its contribution to human tuberculosis is poorly understood. This study aimed to explore any association between bovine density, bovine ownership, and human tuberculosis reporting in India using self-reported tuberculosis data in households and officially reported tuberculosis cases while controlling for common confounders for human tuberculosis. We find an association between human tuberculosis reporting, bovine density and bovine ownership in India. Buffalo density was significantly associated with an increased risk of self-reported tuberculosis in households (odds ratio (OR) = 1.23 (95% credible interval (CI): 1.10-1.39) at household level; incidence rate ratio (IRR) = 1.17 (95% CI: 1.04-1.33) at district level), while cattle density (OR = 0.80, 95% CI: 0.71-0.89; IRR = 0.78, 95% CI: 0.70-0.87) and ownership of bovines in households (OR = 0.94, 95% CI: 0.9-0.99; IRR = 0.67, 95% CI: 0.57-0.79) had a protective association with tuberculosis reporting. It is unclear whether this relates to differences in tuberculosis transmission dynamics, or perhaps an association between bovines and other unexplored confounders for tuberculosis reporting in humans. Our study highlights a need for structured surveillance to estimate the prevalence of tuberculosis in cattle and buffaloes, characterisation of Mycobacterium tuberculosis complex species present in bovines and transmission analyses at the human-animal interface to better assess the burden and risk pathways of zoonotic tuberculosis in India.


Asunto(s)
Bison , Mycobacterium bovis , Tuberculosis Bovina , Tuberculosis , Humanos , Bovinos , Animales , Tuberculosis Bovina/epidemiología , Propiedad , Tuberculosis/epidemiología , Tuberculosis/veterinaria , Búfalos , India/epidemiología
5.
Front Vet Sci ; 9: 814227, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498753

RESUMEN

The Bacillus Calmette-Guérin (BCG) vaccination provides partial protection against, and reduces severity of pathological lesions associated with bovine tuberculosis (bTB) in cattle. Accumulating evidence also suggests that revaccination with BCG may be needed to enhance the duration of immune protection. Since BCG vaccine cross-reacts with traditional tuberculin-based diagnostic tests, a peptide-based defined antigen skin test (DST) comprising of ESAT-6, CFP-10, and Rv3615c to detect the infected among the BCG-vaccinated animals (DIVA) was recently described. The DST reliably identifies bTB-infected animals in experimental challenge models and in natural infection settings, and differentiated these from animals immunized with a single dose of BCG in both skin tests and interferon-gamma release assay (IGRA). The current investigation sought to assess the diagnostic specificity of DST in calves (Bos taurus ssp. taurus × B. t. ssp. indicus; n = 15) revaccinated with BCG 6 months after primary immunization. The results show that none of the 15 BCG-revaccinated calves exhibited a delayed hypersensitivity response when skin tested with DST 61 days post-revaccination, suggesting 100% diagnostic specificity (one-tailed lower 95% CI: 82). In contrast, 8 of 15 (diagnostic specificity = 47%; 95% CI: 21, 73) BCG-revaccinated calves were positive per the single cervical tuberculin (SCT) test using bovine tuberculin. Together, these results show that the DST retains its specificity even after revaccination with BCG and confirms the potential for implementation of BCG-based interventions in settings where test-and-slaughter are not economically or culturally feasible.

6.
Sci Rep ; 12(1): 8586, 2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35597780

RESUMEN

Returning university students represent large-scale, transient demographic shifts and a potential source of transmission to adjacent communities during the COVID-19 pandemic. In this prospective longitudinal cohort study, we tested for IgG antibodies against SARS-CoV-2 in a non-random cohort of residents living in Centre County prior to the Fall 2020 term at the Pennsylvania State University and following the conclusion of the Fall 2020 term. We also report the seroprevalence in a non-random cohort of students collected at the end of the Fall 2020 term. Of 1313 community participants, 42 (3.2%) were positive for SARS-CoV-2 IgG antibodies at their first visit between 07 August and 02 October 2020. Of 684 student participants who returned to campus for fall instruction, 208 (30.4%) were positive for SARS-CoV-2 antibodies between 26 October and 21 December. 96 (7.3%) community participants returned a positive IgG antibody result by 19 February. Only contact with known SARS-CoV-2-positive individuals and attendance at small gatherings (20-50 individuals) were significant predictors of detecting IgG antibodies among returning students (aOR, 95% CI 3.1, 2.07-4.64; 1.52, 1.03-2.24; respectively). Despite high seroprevalence observed within the student population, seroprevalence in a longitudinal cohort of community residents was low and stable from before student arrival for the Fall 2020 term to after student departure. The study implies that heterogeneity in SARS-CoV-2 transmission can occur in geographically coincident populations.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , COVID-19/epidemiología , Humanos , Inmunoglobulina G , Estudios Longitudinales , Pandemias , Estudios Prospectivos , Estudios Seroepidemiológicos , Estudiantes , Universidades
7.
Front Vet Sci ; 9: 823365, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35330613

RESUMEN

Bovine tuberculosis (bTB) is one of the top three, high-priority, livestock diseases in Ethiopia and hence, the need for evaluation of potential control strategies is critical. Here, we applied the test-and-segregate followed by cull strategy for the control of bTB in the intensive Alage dairy farm in Ethiopia. All cattle reared on this farm were repeatedly skin tested using the Comparative Cervical Tuberculin (CCT) test for a total of five times between 2015 and 2021. During the first (October 2015) and second (March 2017) rounds of testing, all reactor animals (>4 mm) were culled, while those that were deemed as inconclusive (1-4 mm) were segregated and retested. At retest, animals with CCT >2 mm were removed from the herd. In the third (December 2017) and fourth (June 2018) rounds of tuberculin testing, a more stringent approach was taken wherein all reactors per the severe mode of CCT test interpretation (>2 mm) were culled. A final herd status check was performed in May 2021. In summary, the number of CCT positives (>4 mm) in the farm dropped from 23.1% (31/134) in October 2015 to 0% in December 2017 and remained 0% until May 2021. In contrast, the number of Single Cervical Tuberculin (SCT) test positives (≥4 mm) increased from 1.8 to 9.5% (from 2017 to 2021), indicating that CCT test might not be sufficient to effectively clear the herd of bTB. However, a more stringent approach would result in a drastic increase in the number of false positives. The total cost of the bTB control effort in this farm holding 134-200 cattle at any given time was conservatively estimated to be ~US$48,000. This, together with the need for culling an unacceptably high number of animals based on skin test status, makes the test-and-cull strategy impractical for nationwide implementation in Ethiopia and other low- and middle-income countries (LMICs) where the infection is endemic. Hence, there is an increased emphasis on the need to explore alternate, affordable measures such as vaccination alongside accurate diagnostics to help control bTB in endemic settings.

8.
Front Vet Sci ; 8: 669898, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490387

RESUMEN

Bovine tuberculosis (bTB) remains endemic in domestic water buffaloes (Bubalus bubalis) in India and elsewhere, with limited options for control other than testing and slaughter. The prescribed tuberculin skin tests with purified protein derivative (PPD) for diagnosis of bTB preclude the use of Bacille Calmette-Guérin (BCG)-based vaccination because of the antigenic cross-reactivity of vaccine strains with Mycobacterium bovis and related pathogenic members of the M. tuberculosis complex (MTBC). For the diagnosis of bTB in domestic water buffaloes, we here assessed a recently described defined-antigen skin test (DST) that comprises overlapping peptides representing the ESAT-6, CFP-10 and Rv3615c antigens, present in disease-causing members of the MTBC but missing in BCG strains. The performance characteristics of three doses (5, 10 or 20 µg/peptide) of the DST were assessed in natural tuberculin skin test reactor (n = 11) and non-reactor (n = 35) water buffaloes at an organized dairy farm in Hisar, India, and results were compared with the single intradermal skin test (SIT) using standard bovine tuberculin (PPD-B). The results showed a dose-dependent response of DST in natural reactor water buffaloes, although the SIT induced a significantly greater (P < 0.001) skin test response than the highest dose of DST used. However, using a cut-off of 2 mm or greater, the 5, 10, and 20 µg DST cocktail correctly classified eight, 10 and all 11 of the SIT-positive reactors, respectively, suggesting that the 20 µg DST cocktail has a diagnostic sensitivity (Se) of 1.0 (95% CI: 0.72-1.0) identical to that of the SIT. Importantly, none of the tested DST doses induced any measurable skin induration responses in the 35 SIT-negative animals, suggesting a specificity point estimate of 1.0 (95% CI: 0.9-1.0), also identical to that of the SIT and compares favorably with that of the comparative cervical test (Se = 0.85; 95% CI: 0.55-0.98). Overall, the results suggest that similar to tuberculin, the DST enables sensitive and specific diagnosis of bTB in water buffaloes. Future field trials to explore the utility of DST as a defined antigen replacement for tuberculin in routine surveillance programs and to enable BCG vaccination of water buffaloes are warranted.

10.
Sci Rep ; 11(1): 14876, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290271

RESUMEN

Meat from wildlife species (bushmeat) represents a major source of dietary protein in low- and middle-income countries where humans and wildlife live in close proximity. Despite the occurrence of zoonotic pathogens in wildlife, their prevalence in bushmeat remains unknown. To assess the risk of exposure to major pathogens in bushmeat, a total of 3784 samples, both fresh and processed, were collected from three major regions in Tanzania during both rainy and dry seasons, and were screened by real-time PCR for the presence of DNA signatures of Bacillus anthracis (B. anthracis), Brucella spp. (Brucella) and Coxiella burnetii (Coxiella). The analysis identified DNA signatures of B. anthracis (0.48%), Brucella (0.9%), and Coxiella (0.66%) in a total of 77 samples. Highest prevalence rates of B. anthracis, Brucella, and Coxiella were observed in wildebeest (56%), dik-dik (50%), and impala (24%), respectively. Fresh samples, those collected during the rainy season, and samples from Selous or Serengeti had a greater relative risk of being positive. Microbiome characterization identified Firmicutes and Proteobacteria as the most abundant phyla. The results highlight and define potential risks of exposure to endemic wildlife diseases from bushmeat and the need for future investigations to address the public health and emerging infectious disease risks associated with bushmeat harvesting, trade, and consumption.


Asunto(s)
Bacillus anthracis/genética , Zoonosis Bacterianas/microbiología , Zoonosis Bacterianas/transmisión , Brucella/genética , Coxiella burnetii/genética , ADN Bacteriano/análisis , Microbiología de Alimentos , Carne/microbiología , Animales , Animales Salvajes , Bacillus anthracis/aislamiento & purificación , Zoonosis Bacterianas/prevención & control , Brucella/aislamiento & purificación , Coxiella burnetii/aislamiento & purificación , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Riesgo , Estaciones del Año , Tanzanía
11.
Int J Med Microbiol ; 311(4): 151511, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33975122

RESUMEN

Super-shed (SS) Escherichia coli O157 (E. coli O157) demonstrate a strong, aggregative, locus of enterocyte effacement (LEE)-independent adherence phenotype on bovine recto-anal junction squamous epithelial (RSE) cells, and harbor polymorphisms in non-LEE-adherence-related loci, including in the type 1 fimbriae operon. To elucidate the role of type 1 fimbriae in strain- and host-specific adherence, we evaluated the entire Fim operon (FimB-H) and its adhesion (FimH) deletion mutants in four E. coli O157 strains, SS17, SS52, SS77 and EDL933, and evaluated the adherence phenotype in bovine RSE and human HEp-2 adherence assays. Consistent with the prevailing dogma that fimH expression is genetically switched off in E. coli O157, the ΔfimHSS52, ΔfimB-HSS52, ΔfimB-HSS17, and ΔfimHSS77 mutants remained unchanged in adherence phenotype to RSE cells. In contrast, the ΔfimHSS17 and ΔfimB-HSS77 mutants changed from a wild-type strong and aggregative, to a moderate and diffuse adherence phenotype, while both ΔfimHEDL933 and ΔfimB-HEDL933 mutants demonstrated enhanced binding to RSE cells (p < 0.05). Additionally, both ΔfimHSS17 and ΔfimHEDL933 were non-adherent to HEp-2 cells (p < 0.05). Complementation of the mutant strains with their respective wild-type genes restored parental phenotypes. Microscopy revealed that the SS17 and EDL933 strains indeed carry type 1 fimbriae-like structures shorter than those seen in uropathogenic E. coli. Taken together, these results provide compelling evidence for a strain and host cell type-dependent role of fimH and the fim operon in E. coli O157 adherence that needs to be further evaluated.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli O157 , Proteínas de Escherichia coli , Animales , Adhesión Bacteriana , Bovinos , Proteínas de Unión al ADN , Infecciones por Escherichia coli/veterinaria , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Fimbrias Bacterianas/genética , Humanos , Integrasas , Fenotipo
12.
Sci Rep ; 11(1): 7074, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33782422

RESUMEN

Bovine tuberculosis (bTB) is a disease of livestock with severe and worldwide economic, animal welfare and zoonotic consequences. Application of test-and-slaughter-based control polices reliant on tuberculin skin testing has been the mainstay of bTB control in cattle. However, little is known about the temporal development of the bovine tuberculin skin test response at the dermal sites of antigen injection. To fill this knowledge gap, we applied minimally-invasive sampling microneedles (SMNs) for intradermal sampling of interstitial fluid at the tuberculin skin test sites in Mycobacterium bovis BCG-vaccinated calves and determined the temporal dynamics of a panel of 15 cytokines and chemokines in situ and in the peripheral blood. The results reveal an orchestrated and coordinated cytokine and local chemokine response, identified IL-1RA as a potential soluble biomarker of a positive tuberculin skin response, and confirmed the utility of IFN-γ and IP-10 for bTB detection in blood-based assays. Together, the results highlight the utility of SMNs to identify novel biomarkers and provide mechanistic insights on the intradermal cytokine and chemokine responses associated with the tuberculin skin test in BCG-sensitized cattle.


Asunto(s)
Vacuna BCG/administración & dosificación , Citocinas/biosíntesis , Agujas , Tuberculina/administración & dosificación , Animales , Bovinos
13.
Front Vet Sci ; 8: 637580, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33681334

RESUMEN

More than 50 million cattle are likely exposed to bovine tuberculosis (bTB) worldwide, highlighting an urgent need for bTB control strategies in low- and middle-income countries (LMICs) and other regions where the disease remains endemic and test-and-slaughter approaches are unfeasible. While Bacillus Calmette-Guérin (BCG) was first developed as a vaccine for use in cattle even before its widespread use in humans, its efficacy against bTB remains poorly understood. To address this important knowledge gap, we conducted a systematic review and meta-analysis to determine the direct efficacy of BCG against bTB challenge in cattle, and performed scenario analyses with transmission dynamic models incorporating direct and indirect vaccinal effects ("herd-immunity") to assess potential impact on herd level disease control. The analysis shows a relative risk of infection of 0.75 (95% CI: 0.68, 0.82) in 1,902 vaccinates as compared with 1,667 controls, corresponding to a direct vaccine efficacy of 25% (95% CI: 18, 32). Importantly, scenario analyses considering both direct and indirect effects suggest that disease prevalence could be driven down close to Officially TB-Free (OTF) status (<0.1%), if BCG were introduced in the next 10-year time period in low to moderate (<15%) prevalence settings, and that 50-95% of cumulative cases may be averted over the next 50 years even in high (20-40%) disease burden settings with immediate implementation of BCG vaccination. Taken together, the analyses suggest that BCG vaccination may help accelerate control of bTB in endemic settings, particularly with early implementation in the face of dairy intensification in regions that currently lack effective bTB control programs.

14.
medRxiv ; 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-33619497

RESUMEN

BACKGROUND: Returning university students represent large-scale, transient demographic shifts and a potential source of transmission to adjacent communities during the COVID-19 pandemic. METHODS: In this prospective longitudinal cohort study, we tested for IgG antibodies against SARS-CoV-2 in a non-random cohort of residents living in Centre County prior to the Fall 2020 term at the Pennsylvania State University and following the conclusion of the Fall 2020 term. We also report the seroprevalence in a non-random cohort of students collected at the end of the Fall 2020 term. RESULTS: Of 1313 community participants, 42 (3.2%) were positive for SARS-CoV-2 IgG antibodies at their first visit between 07 August and 02 October 2020. Of 684 student participants who returned to campus for fall instruction, 208 (30.4%) were positive for SARS-CoV-2 antibodies between 26 October and 21 December. 96 (7.3%) community participants returned a positive IgG antibody result by 19 February. Only contact with known SARS-CoV-2-positive individuals and attendance at small gatherings (20-50 individuals) were significant predictors of detecting IgG antibodies among returning students (aOR, 95% CI: 3.1, 2.07-4.64; 1.52, 1.03-2.24; respectively). CONCLUSIONS: Despite high seroprevalence observed within the student population, seroprevalence in a longitudinal cohort of community residents was low and stable from before student arrival for the Fall 2020 term to after student departure. The study implies that heterogeneity in SARS-CoV-2 transmission can occur in geographically coincident populations.

15.
Commun Biol ; 4(1): 267, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627795

RESUMEN

Millions of individuals who have recovered from SARS-CoV-2 infection may be eligible to participate in convalescent plasma donor programs, yet the optimal window for donating high neutralizing titer convalescent plasma for COVID-19 immunotherapy remains unknown. Here we studied the response trajectories of antibodies directed to the SARS-CoV-2 surface spike glycoprotein and in vitro SARS-CoV-2 live virus neutralizing titers (VN) in 175 convalescent donors longitudinally sampled for up to 142 days post onset of symptoms (DPO). We observed robust IgM, IgG, and viral neutralization responses to SARS-CoV-2 that persist, in the aggregate, for at least 100 DPO. However, there is a notable decline in VN titers ≥160 for convalescent plasma therapy, starting 60 DPO. The results also show that individuals 30 years of age or younger have significantly lower VN, IgG and IgM antibody titers than those in the older age groups; and individuals with greater disease severity also have significantly higher IgM and IgG antibody titers. Taken together, these findings define the optimal window for donating convalescent plasma useful for immunotherapy of COVID-19 patients and reveal important predictors of an ideal plasma donor.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Donantes de Sangre , COVID-19/inmunología , SARS-CoV-2/inmunología , Adulto , Factores de Edad , Anciano , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/sangre , COVID-19/terapia , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Factores de Tiempo , Adulto Joven
16.
J Clin Invest ; 130(12): 6728-6738, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32910806

RESUMEN

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the urgent need for assays that detect protective levels of neutralizing antibodies. We studied the relationship among anti-spike ectodomain (anti-ECD), anti-receptor-binding domain (anti-RBD) IgG titers, and SARS-CoV-2 virus neutralization (VN) titers generated by 2 in vitro assays using convalescent plasma samples from 68 patients with COVID-19. We report a strong positive correlation between both plasma anti-RBD and anti-ECD IgG titers and in vitro VN titers. The probability of a VN titer of ≥160, the FDA-recommended level for convalescent plasma used for COVID-19 treatment, was ≥80% when anti-RBD or anti-ECD titers were ≥1:1350. Of all donors, 37% lacked VN titers of ≥160. Dyspnea, hospitalization, and disease severity were significantly associated with higher VN titer. Frequent donation of convalescent plasma did not significantly decrease VN or IgG titers. Analysis of 2814 asymptomatic adults found 73 individuals with anti-ECD IgG titers of ≥1:50 and strong positive correlation with anti-RBD and VN titers. Fourteen of these individuals had VN titers of ≥1:160, and all of them had anti-RBD titers of ≥1:1350. We conclude that anti-RBD or anti-ECD IgG titers can serve as a surrogate for VN titers to identify suitable plasma donors. Plasma anti-RBD or anti-ECD titers of ≥1:1350 may provide critical information about protection against COVID-19 disease.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/terapia , Inmunoglobulina G , SARS-CoV-2 , Adolescente , Adulto , Anciano , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/administración & dosificación , Anticuerpos Antivirales/sangre , Femenino , Humanos , Inmunización Pasiva , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Sueroterapia para COVID-19
17.
Front Vet Sci ; 7: 391, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793643

RESUMEN

In most low- and middle-income countries (LMICs), bovine tuberculosis (bTB) remains endemic due to the absence of control programs. This is because successful bTB control and eradication programs have relied on test-and-slaughter strategies that are socioeconomically unfeasible in LMICs. While Bacillus Calmette-Guérin (BCG) vaccine-induced protection for cattle has long been documented in experimental and field trials, its use in control programs has been precluded by the inability to differentiate BCG-vaccinated from naturally infected animals using the OIE-prescribed purified protein derivative (PPD)-based tuberculin skin tests. In the current study, the diagnostic specificity and capability for differentiating infected from vaccinated animals (DIVA) of a novel defined antigen skin test (DST) in BCG-vaccinated (Bos taurus ssp. taurus x B. t. ssp. indicus) calves were compared with the performance of traditional PPD-tuberculin in both the skin test and in vitro interferon-gamma release assay (IGRA). The IFN-γ production from whole blood cells stimulated with both PPDs increased significantly from the 0 week baseline levels, while DST induced no measurable IFN-γ production in BCG-vaccinated calves. None of the 15 BCG-vaccinated calves were reactive with the DST skin test (100% specificity; one-tailed lower 95% CI: 82). In contrast, 10 of 15 BCG-vaccinated calves were classified as reactors with the PPD-based single intradermal test (SIT) (specificity in vaccinated animals = 33%; 95% CI: 12, 62). Taken together, the results provide strong evidence that the DST is highly specific and enables DIVA capability in both skin and IGRA assay format, thereby enabling the implementation of BCG vaccine-based bTB control, particularly in settings where test and slaughter remain unfeasible.

18.
Lancet Microbe ; 1(2): e66-e73, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32642742

RESUMEN

BACKGROUND: Zoonotic tuberculosis is defined as human infection with Mycobacterium bovis. Although globally, India has the largest number of human tuberculosis cases and the largest cattle population, in which bovine tuberculosis is endemic, the burden of zoonotic tuberculosis is unknown. The aim of this study was to obtain estimates of the human prevalence of animal-associated members of the Mycobacterium tuberculosis complex (MTBC) at a large referral hospital in India. METHODS: We did a molecular epidemiological surveillance study of 940 positive mycobacteria growth indicator tube (MGIT) cultures, collected from patients visiting the outpatient department at Christian Medical College (Vellore, India) with suspected tuberculosis between Oct 1, 2018, and March 31, 2019. A PCR-based approach was applied to subspeciate cultures. Isolates identified as MTBC other than M tuberculosis or as inconclusive on PCR were subject to whole-genome sequencing (WGS), and phylogenetically compared with publicly available MTBC sequences from south Asia. Sequences from WGS were deposited in the National Center for Biotechnology Information Sequence Read Archive, accession number SRP226525 (BioProject database number PRJNA575883). FINDINGS: The 940 MGIT cultures were from 548 pulmonary and 392 extrapulmonary samples. A conclusive identification was obtained for all 940 isolates; wild-type M bovis was not identified. The isolates consisted of M tuberculosis (913 [97·1%] isolates), Mycobacterium orygis (seven [0·7%]), M bovis BCG (five [0·5%]), and non-tuberculous mycobacteria (15 [1·6%]). Subspecies were assigned for 25 isolates by WGS, which were analysed against 715 MTBC sequences from south Asia. Among the 715 genomes, no M bovis was identified. Four isolates of cattle origin were dispersed among human sequences within M tuberculosis lineage 1, and the seven M orygis isolates from human MGIT cultures were dispersed among sequences from cattle. INTERPRETATION: M bovis prevalence in humans is an inadequate proxy of zoonotic tuberculosis. The recovery of M orygis from humans highlights the need to use a broadened definition, including MTBC subspecies such as M orygis, to investigate zoonotic tuberculosis. The identification of M tuberculosis in cattle also reinforces the need for One Health investigations in countries with endemic bovine tuberculosis. FUNDING: Bill & Melinda Gates Foundation, Canadian Institutes for Health Research.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis Bovina , Tuberculosis , Animales , Canadá , Bovinos , Humanos , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Tuberculosis/epidemiología , Tuberculosis Bovina/epidemiología
19.
bioRxiv ; 2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32577662

RESUMEN

Newly emerged pathogens such as SARS-CoV-2 highlight the urgent need for assays that detect levels of neutralizing antibodies that may be protective. We studied the relationship between anti-spike ectodomain (ECD) and anti-receptor binding domain (RBD) IgG titers, and SARS-CoV-2 virus neutralization (VN) titers generated by two different in vitro assays using convalescent plasma samples obtained from 68 COVID-19 patients, including 13 who donated plasma multiple times. Only 23% (16/68) of donors had been hospitalized. We also studied 16 samples from subjects found to have anti-spike protein IgG during surveillance screening of asymptomatic individuals. We report a strong positive correlation between both plasma anti-RBD and anti-ECD IgG titers, and in vitro VN titer. Anti-RBD plasma IgG correlated slightly better than anti-ECD IgG titer with VN titer. The probability of a VN titer ≥160 was 80% or greater with anti-RBD or anti-ECD titers of ≥1:1350. Thirty-seven percent (25/68) of convalescent plasma donors lacked VN titers ≥160, the FDA-recommended level for convalescent plasma used for COVID-19 treatment. Dyspnea, hospitalization, and disease severity were significantly associated with higher VN titer. Frequent donation of convalescent plasma did not significantly decrease either VN or IgG titers. Analysis of 2,814 asymptomatic adults found 27 individuals with anti-RBD or anti-ECD IgG titers of ≥1:1350, and evidence of VN ≥1:160. Taken together, we conclude that anti-RBD or anti-ECD IgG titers can serve as a surrogate for VN titers to identify suitable plasma donors. Plasma anti-RBD or anti-ECD titer of ≥1:1350 may provide critical information about protection against COVID-19 disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...