Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Parasit Vectors ; 16(1): 79, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36855157

RESUMEN

BACKGROUND: Vector management programs rely on knowledge of the biology and genetic make-up of mosquitoes. Anopheles stephensi is a major invasive urban malaria vector, distributed throughout the Indian subcontinent and Middle East, and has recently been expanding its range in Africa. With the existence of three biological forms, distinctly identifiable based on the number of ridges on eggs and varying vectorial competence, An. stephensi is a perfect species for developing isofemale lines, which can be tested for insecticide susceptibility and vectorial competence of various biological forms. METHODS: We describe key steps involved in establishment and validation of isofemale lines. Isofemale colonies were further used for the characterization of insecticide susceptibility and differential vector competence. The results were statistically evaluated through descriptive and inferential statistics using Vassar Stat and Prism GraphPad software packages. RESULTS: Through a meticulous selection process, we overcame an initial inbreeding depression and found no significant morphometric differences in wings and egg size between the parental and respective isofemale lines in later generations. IndCh and IndInt strains showed variations in resistance to different insecticides belonging to all four major classes. We observed a significant change in vectorial competence between the respective isofemale and parental lines. CONCLUSIONS: Isofemale lines can be a valuable resource for characterizing and enhancing several genotypic and phenotypic traits. This is the first detailed report of the establishment of two isofemale lines of type and intermediate biological forms in Anopheles stephensi. The work encompasses characterization of fitness traits among two lines through a transgenerational study. Furthermore, isofemale colonies were established and used to characterize insecticide susceptibility and vector competence. The study provides valuable insights into differential susceptibility status of the parental and isofemale lines to different insecticides belonging to the same class. Corroborating an earlier hypothesis, we demonstrate the high vector competence of the type form relative to the intermediate form using homozygous lines. Using these lines, it is now possible to study host-parasite interactions and identify factors that might be responsible for altered susceptibility and increased vector competence in An. stephensi biological forms that would also pave the way for developing better vector management strategies.


Asunto(s)
Anopheles , Insecticidas , Malaria , Animales , Anopheles/genética , Insecticidas/farmacología , Malaria/prevención & control , Mosquitos Vectores/genética , Fenotipo
2.
J Cancer Res Clin Oncol ; 149(6): 2451-2462, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35737091

RESUMEN

PURPOSE: Prostate cancer is the second most common cancer diagnosed worldwide and the third most common cancer among men in India. This study's objective was to characterise the mutational landscape of Indian prostate cancer using whole-exome sequencing to identify population-specific polymorphisms. METHODS: Whole-exome sequencing was performed of 58 treatment-naive primary prostate tumors of Indian origin. Multiple computational and statistical analyses were used to profile the known common mutations, other deleterious mutations, driver genes, prognostic biomarkers, and gene signatures unique to each clinical parameter. Cox analysis was performed to validate survival-associated genes. McNemar test identified genes significant to recurrence and receiver-operating characteristic (ROC) analysis was conducted to determine its accuracy. OncodriveCLUSTL algorithm was used to deduce driver genes. The druggable target identified was modeled with its known inhibitor using Autodock. RESULTS: TP53 was the most commonly mutated gene in our cohort. Three novel deleterious variants unique to the Indian prostate cancer subtype were identified: POLQ, FTHL17, and OR8G1. COX regression analysis identified ACSM5, a mitochondrial gene responsible for survival. CYLC1 gene, which encodes for sperm head cytoskeletal protein, was identified as an unfavorable prognostic biomarker indicative of recurrence. The novel POLQ mutant, also identified as a driver gene, was evaluated as the druggable target in this study. POLQ, a DNA repair enzyme implicated in various cancer types, is overexpressed and is associated with a poor prognosis. The mutant POLQ was subjected to structural analysis and modeled with its known inhibitor novobiocin resulting in decreased binding efficiency necessitating the development of a better drug. CONCLUSION: In this pilot study, the molecular profiling using multiple computational and statistical analyses revealed distinct polymorphisms in the Indian prostate cancer cohort. The mutational signatures identified provide a valuable resource for prognostic stratification and targeted treatment strategies for Indian prostate cancer patients. The DNA repair enzyme, POLQ, was identified as the druggable target in this study.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Neoplasias de la Próstata , Semen , Humanos , Masculino , Enzimas Reparadoras del ADN , Secuenciación del Exoma , Mutación , Proyectos Piloto , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , ADN Polimerasa theta
3.
Sci Rep ; 12(1): 19079, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351999

RESUMEN

Identification of Plasmodium-resistance genes in malaria vectors remains an elusive goal despite the recent availability of high-quality genomes of several mosquito vectors. Anopheles stephensi, with its three distinctly-identifiable forms at the egg stage, correlating with varying vector competence, offers an ideal species to discover functional mosquito genes implicated in Plasmodium resistance. Recently, the genomes of several strains of An. stephensi of the type-form, known to display high vectorial capacity, were reported. Here, we report a chromosomal-level assembly of an intermediate-form of An. stephensi strain (IndInt), shown to have reduced vectorial capacity relative to a strain of type-form (IndCh). The contig level assembly with a L50 of 4 was scaffolded into chromosomes by using the genome of IndCh as the reference. The final assembly shows a heterozygous paracentric inversion, 3Li, involving 8 Mbp, which is syntenic to the extensively-studied 2La inversion implicated in Plasmodium resistance in An. gambiae involving 21 Mbp. Deep annotation of genes within the 3Li region in the IndInt assembly using the state-of-the-art protein-fold prediction and other annotation tools reveals the presence of a tumor necrosis factor-alpha (TNF-alpha) like gene, which is the homolog of the Eiger gene in Drosophila. Subsequent chromosome-wide searches revealed homologs of Wengen (Wgn) and Grindelwald (Grnd) genes, which are known to be the receptors for Eiger in Drosophila. We have identified all the genes in IndInt required for Eiger-mediated signaling by analogy to the TNF-alpha system, suggesting the presence of a functionally-active Eiger signaling pathway in IndInt. Comparative genomics of the three type-forms with that of IndInt, reveals structurally disruptive mutations in Eiger gene in all three strains of the type-form, suggesting compromised innate immunity in the type-form as the likely cause of high vectorial capacity in these strains. This is the first report of the presence of a homolog of Eiger in malaria vectors, known to be involved in cell death in Drosophila, within an inversion region in IndInt syntenic to an inversion associated with Plasmodium resistance in An. gambiae.


Asunto(s)
Anopheles , Malaria , Plasmodium , Animales , Anopheles/genética , Mosquitos Vectores/genética , Factor de Necrosis Tumoral alfa/genética , Plasmodium/genética , Inversión Cromosómica , Drosophila
5.
Sci Rep ; 12(1): 3610, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246568

RESUMEN

Anopheles stephensi is the most menacing malaria vector to watch for in newly urbanising parts of the world. Its fitness is reported to be a direct consequence of the vector adapting to laying eggs in over-head water tanks with street-side water puddles polluted by oil and sewage. Large frequent inversions in the genome of malaria vectors are implicated in adaptation. We report the genome assembly of a strain of An. stephensi of the type-form, collected from a construction site from Chennai (IndCh) in 2016. The genome reported here with a L50 of 4, completes the trilogy of high-resolution genomes of strains with respect to a 16.5 Mbp 2Rb genotype in An. stephensi known to be associated with adaptation to environmental heterogeneity. Unlike the reported genomes of two other strains, STE2 (2R+b/2Rb) and UCI (2Rb/2Rb), IndCh is found to be homozygous for the standard form (2R+b/2R+b). Comparative genome analysis revealed base-level details of the breakpoints and allowed extraction of 22,650 segregating SNPs for typing this inversion in populations. Whole genome sequencing of 82 individual mosquitoes from diverse geographical locations reveal that one third of both wild and laboratory populations maintain the heterozygous genotype of 2Rb. The large number of SNPs can be tailored to 1740 exonic SNPs enabling genotyping directly from transcriptome sequencing. The genome trilogy approach accelerated the study of fine structure and typing of an important inversion in An. stephensi, putting the genome resources for this understudied species on par with the extensively studied malaria vector, Anopheles gambiae. We argue that the IndCh genome is relevant for field translation work compared to those reported earlier by showing that individuals from diverse geographical locations cluster with IndCh, pointing to significant convergence resulting from travel and commerce between cities, perhaps, contributing to the survival of the fittest strain.


Asunto(s)
Anopheles , Malaria , Animales , Anopheles/genética , Inversión Cromosómica , India , Mosquitos Vectores/genética , Agua
6.
Front Oncol ; 11: 723162, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34796107

RESUMEN

Head and neck squamous cell carcinomas (HNSCC) include heterogeneous group of tumors, classified according to their anatomical site. It is the sixth most prevalent cancer globally. Among South Asian countries, India accounts for 40% of HNC malignancies with significant morbidity and mortality. In the present study, we have performed exome sequencing and analysis of 51 Head and Neck squamous cell carcinoma samples. Besides known mutations in the oncogenes and tumour suppressors, we have identified novel gene signatures differentiating buccal, alveolar, and tongue cancers. Around 50% of the patients showed mutation in tumour suppressor genes TP53 and TP63. Apart from the known mutations, we report novel mutations in the genes AKT1, SPECC1, and LRP1B, which are linked with tumour progression and patient survival. A highly curated process was developed to identify survival signatures. 36 survival-related genes were identified based on the correlation of functional impact of variants identified using exome-seq with gene expression from transcriptome data (GEPIA database) and survival. An independent LASSO regression analysis was also performed. Survival signatures common to both the methods led to identification of 4 dead and 3 alive gene signatures, the accuracy of which was confirmed by performing a ROC analysis (AUC=0.79 and 0.91, respectively). Also, machine learning-based driver gene prediction tool resulted in the identification of IRAK1 as the driver (p-value = 9.7 e-08) and also as an actionable mutation. Modelling of the IRAK1 mutation showed a decrease in its binding to known IRAK1 inhibitors.

7.
Front Plant Sci ; 12: 693285, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322145

RESUMEN

The identification of efficient molecular markers related to low bolting tendency is a priority in sugar beet (Beta vulgaris L.) breeding. This study aimed to identify SNP markers associated with low bolting tendency by establishing a genome-wide association study. An elaborate 3-year field trial comprising 13 sugar beet lines identified L14 as the one exhibiting the lowest bolting tendency along with an increased survival rate after autumnal sowing. For SNP discovery following phenotyping, contrasting phenotypes of 24 non-bolting and 15 bolting plants of the L14 line were sequenced by restriction site-associated DNA sequencing (RAD-seq). An association model was established with a set of 10,924 RAD-based single nucleotide polymorphism (SNP) markers. The allelic status of the most significantly associated SNPs ranked based on their differential allelic status between contrasting phenotypes (p < 0.01) was confirmed on three different validation datasets comprising diverse sugar beet lines and varieties adopting a range of SNP detection technologies. This study has led to the identification of SNP_36780842 and SNP_48607347 linked to low bolting tendency and can be used for marker-assisted breeding and selection in sugar beet.

8.
BMC Biol ; 19(1): 28, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568145

RESUMEN

BACKGROUND: The mosquito Anopheles stephensi is a vector of urban malaria in Asia that recently invaded Africa. Studying the genetic basis of vectorial capacity and engineering genetic interventions are both impeded by limitations of a vector's genome assembly. The existing assemblies of An. stephensi are draft-quality and contain thousands of sequence gaps, potentially missing genetic elements important for its biology and evolution. RESULTS: To access previously intractable genomic regions, we generated a reference-grade genome assembly and full transcript annotations that achieve a new standard for reference genomes of disease vectors. Here, we report novel species-specific transposable element (TE) families and insertions in functional genetic elements, demonstrating the widespread role of TEs in genome evolution and phenotypic variation. We discovered 29 previously hidden members of insecticide resistance genes, uncovering new candidate genetic elements for the widespread insecticide resistance observed in An. stephensi. We identified 2.4 Mb of the Y chromosome and seven new male-linked gene candidates, representing the most extensive coverage of the Y chromosome in any mosquito. By tracking full-length mRNA for > 15 days following blood feeding, we discover distinct roles of previously uncharacterized genes in blood metabolism and female reproduction. The Y-linked heterochromatin landscape reveals extensive accumulation of long-terminal repeat retrotransposons throughout the evolution and degeneration of this chromosome. Finally, we identify a novel Y-linked putative transcription factor that is expressed constitutively throughout male development and adulthood, suggesting an important role. CONCLUSION: Collectively, these results and resources underscore the significance of previously hidden genomic elements in the biology of malaria mosquitoes and will accelerate the development of genetic control strategies of malaria transmission.


Asunto(s)
Anopheles/genética , Expresión Génica , Genoma , Resistencia a los Insecticidas/genética , Mosquitos Vectores/genética , Animales , Femenino , Perfilación de la Expresión Génica , Malaria/transmisión , Masculino
9.
Biology (Basel) ; 11(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35053047

RESUMEN

Rhizoctonia solani, causing Rhizoctonia crown and root rot, is a major risk to sugar beet (Beta vulgaris L.) cultivation. The development of resistant varieties accelerated by marker-assisted selection is a priority of breeding programs. We report the identification of a single-nucleotide polymorphism (SNP) marker linked to Rhizoctonia resistance using restriction site-associated DNA (RAD) sequencing of two geographically discrete sets of plant materials with different degrees of resistance/susceptibility to enable a wider selection of superior genotypes. The variant calling pipeline utilized SAMtools for variant calling and the resulting raw SNPs from RAD sequencing (15,988 and 22,439 SNPs) were able to explain 13.40% and 25.45% of the phenotypic variation in the two sets of material from different sources of origin, respectively. An association analysis was carried out independently on both the datasets and mutually occurring significant SNPs were filtered depending on their contribution to the phenotype using principal component analysis (PCA) biplots. To provide a ready-to-use marker for the breeding community, a systematic molecular validation of significant SNPs distributed across the genome was undertaken to combine high-resolution melting, Sanger sequencing, and rhAmp SNP genotyping. We report that RsBv1 located on Chromosome 6 (9,000,093 bp) is significantly associated with Rhizoctonia resistance (p < 0.01) and able to explain 10% of the phenotypic disease variance. The related SNP assay is thus ready for marker-assisted selection in sugar beet breeding for Rhizoctonia resistance.

10.
Front Genet ; 11: 565626, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33312190

RESUMEN

Malaria remains a major healthcare risk to growing economies like India, and a chromosome-level reference genome of Anopheles stephensi is critical for successful vector management and understanding of vector evolution using comparative genomics. We report chromosome-level assemblies of an Indian strain, STE2, and a Pakistani strain SDA-500 by combining draft genomes of the two strains using a homology-based iterative approach. The resulting assembly IndV3/PakV3 with L50 of 9/12 and N50 6.3/6.9 Mb had scaffolds long enough for building 90% of the euchromatic regions of the three chromosomes, IndV3s/PakV3s, using low-resolution physical markers and enabled the generation of the next version of genome assemblies, IndV4/PakV4, using HiC data. We have validated these assemblies using contact maps against publicly available HiC raw data from two strains including STE2 and another lab strain of An. stephensi from UCI and compare the quality of the assemblies with other assemblies made available as preprints since the submission of the manuscript. We show that the IndV3s and IndV4 assemblies are sensitive in identifying a homozygous 2Rb inversion in the UCI strain and a 2Rb polymorphism in the STE2 strain. Multiple tandem copies of CYP6a14, 4c1, and 4c21 genes, implicated in insecticide resistance, lie within this inversion locus. Comparison of assembled genomes suggests a variation of 1 in 81 positions between the UCI and STE2 lab strains, 1 in 82 between SDA-500 and UCI strain, and 1 in 113 between SDA-500 and STE2 strains of An. stephensi, which are closer than 1 in 68 variations among individuals from two other lab strains sequenced and reported here. Based on the developmental transcriptome and orthology of all the 54 olfactory receptors (ORs) to those of other Anopheles species, we identify an OR with the potential for host recognition in the genus Anopheles. A comparative analysis of An. stephensi genomes with the completed genomes of a few other Anopheles species suggests limited inter-chromosomal gene flow and loss of synteny within chromosomal arms even among the closely related species.

11.
Front Plant Sci ; 11: 579529, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33262776

RESUMEN

In the age of genomics-based crop improvement, a high-quality genome of a local landrace adapted to the local environmental conditions is critically important. Grain amaranths produce highly nutritional grains with a multitude of desirable properties including C4 photosynthesis highly sought-after in other crops. For improving the agronomic traits of grain amaranth and for the transfer of desirable traits to dicot crops, a reference genome of a local landrace is necessary. Toward this end, our lab had initiated sequencing the genome of Amaranthus (A.) hypochondriacus (A.hyp_K_white) and had reported a draft genome in 2014. We selected this landrace because it is well adapted for cultivation in India during the last century and is currently a candidate for TILLING-based crop improvement. More recently, a high-quality chromosome-level assembly of A. hypochondriacus (PI558499, Plainsman) was reported. Here, we report a chromosome-level assembly of A.hyp_K_white (AhKP) using low-coverage PacBio reads, contigs from the reported draft genome of A.hyp_K_white, raw HiC data and reference genome of Plainsman (A.hyp.V.2.1). The placement of A.hyp_K_white on the phylogenetic tree of grain amaranths of known accessions clearly suggests that A.hyp_K_white is genetically distal from Plainsman and is most closely related to the accession PI619259 from Nepal (Ramdana). Furthermore, the classification of another accession, Suvarna, adapted to the local environment and selected for yield and other desirable traits, is clearly Amaranthus cruentus. A classification based on hundreds of thousands of SNPs validated taxonomy-based classification for a majority of the accessions providing the opportunity for reclassification of a few.

12.
PLoS Biol ; 18(1): e3000583, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31971940

RESUMEN

We present Knowledge Engine for Genomics (KnowEnG), a free-to-use computational system for analysis of genomics data sets, designed to accelerate biomedical discovery. It includes tools for popular bioinformatics tasks such as gene prioritization, sample clustering, gene set analysis, and expression signature analysis. The system specializes in "knowledge-guided" data mining and machine learning algorithms, in which user-provided data are analyzed in light of prior information about genes, aggregated from numerous knowledge bases and encoded in a massive "Knowledge Network." KnowEnG adheres to "FAIR" principles (findable, accessible, interoperable, and reuseable): its tools are easily portable to diverse computing environments, run on the cloud for scalable and cost-effective execution, and are interoperable with other computing platforms. The analysis tools are made available through multiple access modes, including a web portal with specialized visualization modules. We demonstrate the KnowEnG system's potential value in democratization of advanced tools for the modern genomics era through several case studies that use its tools to recreate and expand upon the published analysis of cancer data sets.


Asunto(s)
Algoritmos , Nube Computacional , Minería de Datos/métodos , Genómica/métodos , Programas Informáticos , Análisis por Conglomerados , Biología Computacional/métodos , Análisis de Datos , Conjuntos de Datos como Asunto , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Conocimiento , Aprendizaje Automático , Metabolómica/métodos
13.
Sci Rep ; 9(1): 10220, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308439

RESUMEN

Edible/non-toxic varieties of Jatropha curcas L. are gaining increasing attention, providing both oil as biofuel feedstock or even as edible oil and the seed kernel meal as animal feed ingredient. They are a viable alternative to the limitation posed by the presence of phorbol esters in toxic varieties. Accurate genotyping of toxic/non-toxic accessions is critical to breeding management. The aim of this study was to identify SNP markers linked to seed toxicity in J. curcas. For SNP discovery, NGS technology was used to sequence the whole genomes of a toxic and non-toxic parent along with a bulk of 51 toxic and 30 non-toxic F2 plants. To ascertain the association between SNP markers and seed toxicity trait, candidate SNPs were genotyped on 672 individuals segregating for seed toxicity and two collections of J. curcas composed of 96 individuals each. In silico SNP discovery approaches led to the identification of 64 candidate SNPs discriminating non-toxic and toxic samples. These SNPs were mapped on Chromosome 8 within the Linkage Group 8 previously identified as a genomic region important for phorbol ester biosynthesis. The association study identified two new SNPs, SNP_J22 and SNP_J24 significantly linked to low toxicity with R2 values of 0.75 and 0.54, respectively. Our study released two valuable SNP markers for high-throughput, marker-assisted breeding of seed toxicity in J. curcas.


Asunto(s)
Jatropha/genética , Jatropha/toxicidad , Semillas/toxicidad , Biocombustibles/toxicidad , Biomarcadores , Ligamiento Genético/genética , Genotipo , Aceites de Plantas/metabolismo , Polimorfismo de Nucleótido Simple/genética , Semillas/genética
14.
BMC Genomics ; 20(1): 459, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31170919

RESUMEN

BACKGROUND: The most widely used human genome reference assembly hg19 harbors minor alleles at 2.18 million positions as revealed by 1000 Genome Phase 3 dataset. Although this is less than 2% of the 89 million variants reported, it has been shown that the minor alleles can result in 30% false positives in individual genomes, thus misleading and burdening downstream interpretation. More alarming is the fact that, significant percentage of variants that are homozygous recessive for these minor alleles, with potential disease implications, are masked from reporting. RESULTS: We have demonstrated that the false positives (FP) and false negatives (FN) can be corrected for by simply replacing nucleotides at the minor allele positions in hg19 with corresponding major allele. Here, we have effectively replaced 2.18 million minor alleles Single Nucleotide Polymorphism (SNPs), Insertion and Deletions (INDELs), Multiple Nucleotide Polymorphism (MNPs) in hg19 with the corresponding major alleles to create an ethnically normalized reference genome called hg19KIndel. In doing so, hg19KIndel has both corrected for sequencing errors acknowledged to be present in hg19 and has improved read alignment near the minor alleles in hg19. CONCLUSION: We have created and made available a new version human reference genome called hg19KIndel. It has been shown that variant calling using hg19KIndel, significantly reduces false positives calls, which in-turn reduces the burden from downstream analysis and validation. It also improved false negative variants call, which means that the variants which were getting missed due to the presence of minor alleles in hg19, will now be called using hg19KIndel. Using hg19KIndel, one even gets a better mapping percentage when compared to currently available human reference genome. hg19KIndel reference genome and its auxiliary datasets are available at https://doi.org/10.5281/zenodo.2638113.


Asunto(s)
Etnicidad/genética , Variación Genética , Genoma Humano , Alelos , Bases de Datos de Ácidos Nucleicos , Humanos , Mutación INDEL , Polimorfismo de Nucleótido Simple , Estándares de Referencia , Análisis de Secuencia de ADN
15.
RNA Biol ; 16(6): 754-769, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30810475

RESUMEN

Prp16 is a DEAH box pre-mRNA splicing factor that triggers a key spliceosome conformational switch to facilitate second step splicing in Saccharomyces cerevisiae. However, Prp16 functions are largely unexplored in Schizosaccharomyces pombe, an attractive model with exon-intron architecture more relevant to several other eukaryotes. Here, we generated mis-sense alleles in SpPrp16 whose consequences on genome-wide splicing uncover its nearly global splicing role with only a small subset of unaffected introns. Prp16 dependent and independent intron categories displayed a striking difference in the strength of intronic 5' splice site (5'SS)-U6 snRNA and branch site (BS)-U2 snRNA interactions. Selective weakening of these interactions could convert a Prp16 dependent intron into an independent one. These results point to the role of SpPrp16 in destabilizing 5'SS-U6snRNA and BS-U2snRNA interactions which plausibly trigger structural alterations in the spliceosome to facilitate first step catalysis. Our data suggest that SpPrp16 interactions with early acting factors, its enzymatic activities and association with intronic elements collectively account for efficient and accurate first step catalysis. In addition to splicing derangements in the spprp16F528S mutant, we show that SpPrp16 influences cell cycle progression and centromeric heterochromatinization. We propose that strong 5'SS-U6 snRNA and BS-U2 snRNA complementarity of intron-like elements in non-coding RNAs which lead to complete splicing arrest and impaired Seb1 functions at the pericentromeric loci may cumulatively account for the heterochromatin defects in spprp16F528S cells. These findings suggest that the diverse Prp16 functions within a genome are likely governed by its intronic features that influence splice site-snRNA interaction strength.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Intrones , ARN Helicasas/fisiología , Factores de Empalme de ARN/fisiología , Empalme del ARN , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Alelos , Secuencia de Aminoácidos , Ciclo Celular , Centrómero , Secuencia Conservada , Genoma Fúngico , Mutación , ARN Helicasas/química , ARN Helicasas/genética , ARN Helicasas/metabolismo , Factores de Empalme de ARN/química , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Nuclear Pequeño/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
16.
Oncotarget ; 9(65): 32419-32434, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30197753

RESUMEN

The role of many lncRNAs in cancer remains elusive including that for a Prostate Cancer Associated Transcript 92 (PCAT92). PCAT92 shares the locus on chromosome 13 with ABCC4 gene, known to be implicated in prostate cancer. It has been shown that PCAT92 and ABCC4 are up-regulated in prostate cancer samples from multiple transcriptome datasets. Among the prostate cancer cell-lines LNCaP showed maximum overexpression of PCAT92 compared to control cell-line RWPE-1. We have shown that knockdown of PCAT92 in LNCaP cells reduces cell viability and proliferation and down-regulates ABCC4 transcript/protein expression. The shared region between PCAT92 and ABCC4 has a binding site for an oncogenic transcription factor (ZIC2) which is also upregulated in the majority of datasets studied here. ZIC2 binding to the predicted ABCC4 promoter has been confirmed using pull-down assay. Interestingly, under PCAT92 knockdown condition, there is a reduction in the ZIC2 binding to ABCC4 promoter indicating the potential involvement of PCAT92 in the recruitment of ZIC2. We have identified distinct regions on PCAT92 with potential to bind to ZIC2 non-DNA binding Zinc-finger domain and potential for triplex formation near ABCC4 promoter region, which have been experimentally validated. Together, these observations and localization in the nucleus suggests that PCAT92 may play a role in prostate cancer by increasing the local concentration of ZIC2 by forming RNA-DNA triplex near ABCC4 promoter thus helping in recruitment of ZIC2 for ABCC4 regulation.

17.
Hum Genome Var ; 5: 17061, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29423242

RESUMEN

A large number of congenital disorders are very rare and localized to rural areas in India, a country that practices both endogamy and consanguinity. Recent advances in genomics can aid in the identification of causative genomic elements when exploring therapeutic interventions and developing neonatal screening to assign novel functions. Here, we report a novel loss-of-function mutation (p.Trp370*) in the HACE1 gene that is associated with a rare congenital neurodevelopmental disorder in a boy from a remote village in southern India.

18.
PLoS One ; 12(8): e0180528, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28786999

RESUMEN

Genome duplication event in edible dicots under the orders Rosid and Asterid, common during the oligocene period, is missing for species under the order Caryophyllales. Despite this, grain amaranths not only survived this period but display many desirable traits missing in species under rosids and asterids. For example, grain amaranths display traits like C4 photosynthesis, high-lysine seeds, high-yield, drought resistance, tolerance to infection and resilience to stress. It is, therefore, of interest to look for minor genome rearrangements with potential functional implications that are unique to grain amaranths. Here, by deep sequencing and assembly of 16 transcriptomes (86.8 billion bases) we have interrogated differential genome rearrangement unique to Amaranthus hypochondriacus with potential links to these phenotypes. We have predicted 125,581 non-redundant transcripts including 44,529 protein coding transcripts identified based on homology to known proteins and 13,529 predicted as novel/amaranth specific coding transcripts. Of the protein coding de novo assembled transcripts, we have identified 1810 chimeric transcripts. More than 30% and 19% of the gene pairs within the chimeric transcripts are found within the same loci in the genomes of A. hypochondriacus and Beta vulgaris respectively and are considered real positives. Interestingly, one of the chimeric transcripts comprises two important genes, namely DHDPS1, a key enzyme implicated in the biosynthesis of lysine, and alpha-glucosidase, an enzyme involved in sucrose catabolism, in close proximity to each other separated by a distance of 612 bases in the genome of A. hypochondriacus in a convergent configuration. We have experimentally validated that transcripts of these two genes are also overlapping in the 3' UTR with their expression negatively correlated from bud to mature seed, suggesting a potential link between the high seed lysine trait and unique genome organization.


Asunto(s)
Amaranthus/genética , Amaranthus/metabolismo , Genoma de Planta , Transcriptoma , Beta vulgaris/genética , Beta vulgaris/metabolismo , Análisis por Conglomerados , Biología Computacional , Fusión Génica , Genes Sobrepuestos , Sitios Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Lisina/metabolismo , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/metabolismo , Homología de Secuencia , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo
19.
Mol Genet Genomic Med ; 5(1): 15-20, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28116326

RESUMEN

BACKGROUND: The hg19 assembly of the human genome is the most heavily annotated and most commonly used reference to make variant calls for individual genomes. Based on the phase 3 report of the 1000 genomes project (1000G), it is now well known that many positions in the hg19 genome represent minor alleles. Since commonly used variant call methods are developed under the assumption that hg19 reference harbors major alleles at all the ~3 billion positions, these methods mask the calls whenever an individual is homozygous to the minor allele at the respective positions. Hence, it is important to address the extent and impact of these minor alleles in hg19 from the point of view of individual genomes. METHOD: We have created a reference genome, hg19K, in which all the positions in hg19 reference harboring minor allele were replaced by those from the phase 3 report of the 1000 genomes project. The genomes of five individuals, downloaded from the public repository, were analyzed using both hg19 and hg19K and compared. RESULTS: Out of the 81 million SNPs in phase 3 report from the 1000 genomes project, 1.9 million positions were found to be major alleles compared to hg19 with many having an allele frequency of >0.9. We observed that ~30% of the SNVs found in individual genomes are confined to the 1.9 million positions. Also, there are ~8% unique SNVs predicted using hg19K-based approach, which are also confined to the 1.9 million positions. CONCLUSION: We report that the presence of minor alleles in hg19 alone results in ~8% false negatives and ~30% false positives during variant calls. Also, among the variant calls unique to hg19K-based methods, which are missed in individuals homozygous to the minor alleles in hg19-based prediction, some are deleterious missense mutations at sites conserved across diverse species.

20.
J Biol Chem ; 290(41): 25129-39, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26292217

RESUMEN

Even though GPCR signaling in human platelets is directly involved in hemostasis and thrombus formation, the sequence of events by which G protein activation leads to αIIbß3 integrin activation (inside-out signaling) is not clearly defined. We previously demonstrated that a conformationally sensitive domain of one G protein, i.e. Gα13 switch region 1 (Gα13SR1), can directly participate in the platelet inside-out signaling process. Interestingly however, the dependence on Gα13SR1 signaling was limited to PAR1 receptors, and did not involve signaling through other important platelet GPCRs. Based on the limited scope of this involvement, and the known importance of G13 in hemostasis and thrombosis, the present study examined whether signaling through another switch region of G13, i.e. Gα13 switch region 2 (Gα13SR2) may represent a more global mechanism of platelet activation. Using multiple experimental approaches, our results demonstrate that Gα13SR2 forms a bi-molecular complex with the head domain of talin and thereby promotes ß3 integrin activation. Moreover, additional studies provided evidence that Gα13SR2 is not constitutively associated with talin in unactivated platelets, but becomes bound to talin in response to elevated intraplatelet calcium levels. Collectively, these findings provide evidence for a novel paradigm of inside-out signaling in platelets, whereby ß3 integrin activation involves the direct binding of the talin head domain to the switch region 2 sequence of the Gα13 subunit.


Asunto(s)
Plaquetas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/química , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Talina/química , Talina/metabolismo , Secuencia de Aminoácidos , Animales , Plaquetas/citología , Adhesión Celular , Humanos , Ratones , Células 3T3 NIH , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/agonistas , Unión Proteica , Estructura Terciaria de Proteína , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA