Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649235

RESUMEN

The versatility of mitogen-activated protein kinases (MAPKs) in translating exogenous and endogenous stimuli into appropriate cellular responses depends on its substrate specificity. In animals, several mechanisms have been proposed about how MAPKs maintain specificity to regulate distinct functional pathways. However, little is known of mechanisms that enable substrate selectivity in plant MAPKs. Small ubiquitin-like modifier (SUMO), a posttranslational modification system, plays an important role in plant development and defense by rapid reprogramming of cellular events. In this study we identified a functional SUMO interaction motif (SIM) in Arabidopsis MPK3 and MPK6 that reveals a mechanism for selective interaction of MPK3/6 with SUMO-conjugated WRKY33, during defense. We show that WRKY33 is rapidly SUMOylated in response to Botrytis cinerea infection and flg22 elicitor treatment. SUMOylation mediates WRKY33 phosphorylation by MPKs and consequent transcription factor activity. Disruption of either WRKY33 SUMO or MPK3/6 SIM sites attenuates their interaction and inactivates WRKY33-mediated defense. However, MPK3/6 SIM mutants show normal interaction with a non-SUMOylated form of another transcription factor, SPEECHLESS, unraveling a role for SUMOylation in differential substrate selectivity by MPKs. We reveal that the SUMO proteases, SUMO PROTEASE RELATED TO FERTILITY1 (SPF1) and SPF2 control WRKY33 SUMOylation and demonstrate a role for these SUMO proteases in defense. Our data reveal a mechanism by which MPK3/6 prioritize molecular pathways by differentially selecting substrates using the SUMO-SIM module during defense responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Botrytis/inmunología , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Quinasas Activadas por Mitógenos , Enfermedades de las Plantas , Ubiquitinas , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/inmunología , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Ubiquitinas/genética , Ubiquitinas/inmunología
3.
Curr Biol ; 30(19): 3880-3888.e5, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32795439

RESUMEN

Morphological variation is the basis of natural diversity and adaptation. For example, angiosperms (flowering plants) evolved during the Cretaceous period more than 100 mya and quickly colonized terrestrial habitats [1]. A major reason for their astonishing success was the formation of fruits, which exist in a myriad of different shapes and sizes [2]. Evolution of organ shape is fueled by variation in expression patterns of regulatory genes causing changes in anisotropic cell expansion and division patterns [3-5]. However, the molecular mechanisms that alter the polarity of growth to generate novel shapes are largely unknown. The heart-shaped fruits produced by members of the Capsella genus comprise an anatomical novelty, making it particularly well suited for studies on morphological diversification [6-8]. Here, we show that post-translational modification of regulatory proteins provides a critical step in organ-shape formation. Our data reveal that the SUMO protease, HEARTBREAK (HTB), from Capsella rubella controls the activity of the key regulator of fruit development, INDEHISCENT (CrIND in C. rubella), via de-SUMOylation. This post-translational modification initiates a transduction pathway required to ensure precisely localized auxin biosynthesis, thereby facilitating anisotropic cell expansion to ultimately form the heart-shaped Capsella fruit. Therefore, although variation in the expression of key regulatory genes is known to be a primary driver in morphological evolution, our work demonstrates how other processes-such as post-translational modification of one such regulator-affects organ morphology.


Asunto(s)
Capsella/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas/genética , Adaptación Fisiológica/genética , Anisotropía , Proteínas de Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Capsella/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Expresión Génica/genética , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo
4.
Curr Biol ; 30(8): 1410-1423.e3, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32109396

RESUMEN

Brassinosteroids (BRs) play crucial roles in plant development, but little is known of mechanisms that integrate environmental cues into BR signaling. Conjugation to the small ubiquitin-like modifier (SUMO) is emerging as an important mechanism to transduce environmental cues into cellular signaling. In this study, we show that SUMOylation of BZR1, a key transcription factor of BR signaling, provides a conduit for environmental influence to modulate growth during stress. SUMOylation stabilizes BZR1 in the nucleus by inhibiting its interaction with BIN2 kinase. During salt stress, Arabidopsis plants arrest growth through deSUMOylation of BZR1 in the cytoplasm by promoting the accumulation of the BZR1 targeting SUMO protease, ULP1a. ULP1a mutants are salt tolerant and insensitive to the BR inhibitor, brassinazole. BR treatment stimulates ULP1a degradation, allowing SUMOylated BZR1 to accumulate and promote growth. This study uncovers a mechanism for integrating environmental cues into BR signaling to shape growth.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Brasinoesteroides/metabolismo , Cisteína Endopeptidasas/genética , Proteínas de Unión al ADN/genética , Transducción de Señal/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular , Cisteína Endopeptidasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Sumoilación
5.
Front Plant Sci ; 10: 1150, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31620160

RESUMEN

Efficient elimination of the editing machinery remains a challenge in plant biotechnology after genome editing to minimize the probability of off-target mutations, but it is also important to deliver end users with edited plants free of foreign DNA. Using the modular cloning system Golden Braid, we have included a fluorescence-dependent transgene monitoring module to the genome-editing tool box. We have tested this approach in Solanum lycopersicum, Oryza sativa, and Arabidopsis thaliana. We demonstrate that DsRED fluorescence visualization works efficiently in dry seeds as marker for the detection of the transgene in the three species allowing an efficient method for selecting transgene-free dry seeds. In the first generation of DsRED-free CRISPR/Cas9 null segregants, we detected gene editing of selected targets including homozygous mutants for the plant species tested. We demonstrate that this strategy allows rapid selection of transgene-free homozygous edited crop plants in a single generation after in vitro transformation.

6.
Science ; 362(6421): 1407-1410, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30573626

RESUMEN

Plants adapt to heterogeneous soil conditions by altering their root architecture. For example, roots branch when in contact with water by using the hydropatterning response. We report that hydropatterning is dependent on auxin response factor ARF7. This transcription factor induces asymmetric expression of its target gene LBD16 in lateral root founder cells. This differential expression pattern is regulated by posttranslational modification of ARF7 with the small ubiquitin-like modifier (SUMO) protein. SUMOylation negatively regulates ARF7 DNA binding activity. ARF7 SUMOylation is required to recruit the Aux/IAA (indole-3-acetic acid) repressor protein IAA3. Blocking ARF7 SUMOylation disrupts IAA3 recruitment and hydropatterning. We conclude that SUMO-dependent regulation of auxin response controls root branching pattern in response to water availability.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Sumoilación , Factores de Transcripción/metabolismo , Agua/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , ADN de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Unión Proteica , Proteína SUMO-1/metabolismo
7.
Nat Commun ; 9(1): 5185, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518761

RESUMEN

Detection of conserved microbial patterns by host cell surface pattern recognition receptors (PRRs) activates innate immunity. The FLAGELLIN-SENSITIVE 2 (FLS2) receptor perceives bacterial flagellin and recruits another PRR, BAK1 and the cytoplasmic-kinase BIK1 to form an active co-receptor complex that initiates antibacterial immunity in Arabidopsis. Molecular mechanisms that transmit flagellin perception from the plasma-membrane FLS2-associated receptor complex to intracellular events are less well understood. Here, we show that flagellin induces the conjugation of the SMALL UBIQUITIN-LIKE MODIFIER (SUMO) protein to FLS2 to trigger release of BIK1. Disruption of FLS2 SUMOylation can abolish immune responses, resulting in susceptibility to bacterial pathogens in Arabidopsis. We also identify the molecular machinery that regulates FLS2 SUMOylation and demonstrate a role for the deSUMOylating enzyme, Desi3a in innate immunity. Flagellin induces the degradation of Desi3a and enhances FLS2 SUMOylation to promote BIK1 dissociation and trigger intracellular immune signalling.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Arabidopsis/inmunología , Cisteína Endopeptidasas/inmunología , Enfermedades de las Plantas/inmunología , Proteínas Quinasas/inmunología , Pseudomonas syringae/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/inmunología , Cisteína Endopeptidasas/genética , Flagelina/inmunología , Inmunidad Innata , Enfermedades de las Plantas/microbiología , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Pseudomonas syringae/genética , Pseudomonas syringae/fisiología , Receptores de Reconocimiento de Patrones/genética , Transducción de Señal , Sumoilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...