Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Enzymol ; 699: 207-230, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38942504

RESUMEN

Chemoenzymatic synthesis of non-natural terpenes using the promiscuous activity of terpene synthases allows for the expansion of the chemical space of terpenoids with potentially new bioactivities. In this report, we describe protocols for the preparation of a novel aphid attractant, (S)-14,15-dimethylgermacrene D, by exploiting the promiscuity of (S)-germacrene D synthase from Solidago canadensis and using an engineered biocatalytic route to convert prenols to terpenoids. The method uses a combination of five enzymes to carry out the preparation of terpenoid semiochemicals in two steps: (1) diphosphorylation of five or six carbon precursors (prenol, isoprenol and methyl-isoprenol) catalyzed by Plasmodium falciparum choline kinase and Methanocaldococcus jannaschii isopentenyl phosphate kinase to form DMADP, IDP and methyl-IDP, and (2) chain elongation and cyclization catalyzed by Geobacillus stearothermophilus (2E,6E)-farnesyl diphosphate synthase and S. canadensis (S)-germacrene D synthase to produce (S)-germacrene D and (S)-14,15-dimethylgermacrene D. Using this method, new non-natural terpenoids are readily accessible and the approach can be adopted to produce different terpene analogs and terpenoid derivatives with potential novel applications.


Asunto(s)
Transferasas Alquil y Aril , Terpenos , Terpenos/metabolismo , Terpenos/química , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Plasmodium falciparum/enzimología , Animales , Biocatálisis , Especificidad por Sustrato , Áfidos/enzimología
2.
ACS Catal ; 13(21): 14199-14204, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37942265

RESUMEN

Terpene synthases (TS) catalyze complex reactions to produce a diverse array of terpene skeletons from linear isoprenyl diphosphates. Patchoulol synthase (PTS) from Pogostemon cablin converts farnesyl diphosphate into patchoulol. Using simulation-guided engineering, we obtained PTS variants that eliminate water capture. Further, we demonstrate that modifying the structurally conserved Hα-1 loop also reduces hydroxylation in PTS, as well as in germacradiene-11-ol synthase (Gd11olS), leading to cyclic neutral intermediates as products, including α-bulnesene (PTS) and isolepidozene (Gd11olS). Hα-1 loop modification could be a general strategy for engineering sesquiterpene synthases to produce complex cyclic hydrocarbons without the need for structure determination or modeling.

3.
ACS Catal ; 11(3): 1033-1041, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33614194

RESUMEN

Natural sesquiterpene synthases have evolved to make complex terpenoids by quenching reactive carbocations either by proton transfer or by hydroxylation (water capture), depending on their active site. Germacradien-11-ol synthase (Gd11olS) from Streptomyces coelicolor catalyzes the cyclization of farnesyl diphosphate (FDP) into the hydroxylated sesquiterpene germacradien-11-ol. Here, we combine experiment and simulation to guide the redesign of its active site pocket to avoid hydroxylation of the product. Molecular dynamics simulations indicate two regions between which water molecules can flow that are responsible for hydroxylation. Point mutations of selected residues result in variants that predominantly form a complex nonhydroxylated product, which we identify as isolepidozene. Our results indicate how these mutations subtly change the molecular choreography in the Gd11olS active site and thereby pave the way for the engineering of terpene synthases to make complex terpenoid products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...