Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 929: 172657, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38649041

RESUMEN

The incineration fly ash (IFA) resulting from municipal solid waste combustion is laden with heavy metals, necessitating proper treatment not only for environmental management but also to reclaim the metal values. The surge in non-traditional metals like cobalt as emerging contaminant within IFA samples further attracts to address this issue. In response, the hydrometallurgical recycling of a cobalt-bearing IFA has been studied. Thereby, approximately 98 % zinc and 96 % cobalt were leached using a 1.0 mol/L H2SO4 solution at 90 °C and 1 h of leaching time. In-depth analysis of the leaching process unveiled metals' dissolution primarily via the ion-exclusion mechanism, as evidenced by lower diffusion coefficients (between 10-9 and 10-11 m2/s) and activation energies (9.6-14.9 kJ/mol). Above 99 % separation of zinc from the cobalt-bearing leach liquor was achieved by extraction with 1.0 mol/L D2EHPA at an equilibrium pH below 3.0, followed by stripping with a 2.0 mol/L H2SO4 solution. Cobalt, remained in the raffinate was efficiently precipitated by adding a 20 % excess dosage of oxalic acid to the stoichiometric ratio of C2O42-:Co2+, resulting in only 5 mg/L cobalt left in the solution when precipitation occurred at a pH of 2.8. Additionally, the conversion of CoC2O4 to high-purity Co3O4 was conducted through heat-treatment at 600 °C. The resulting Co3O4 was mixed with Li2CO3 at a Li/Co molar ratio of 1.1, yielding a LiCoO2 precursor that exhibited good electrochemical properties with a capacity of 128 mAh/g, thus affirming the high quality of the recycled cobalt. A comprehensive life-cycle assessment of the recycling process revealed that cobalt precipitation alone contributes approximately 50 % of the total global warming potential (GWP = 4.2624 kg CO2-eq). Notably, this value is remarkably lower than the GWP reported for primary cobalt production, highlighting the environmentally-friendly approach of this recycling endeavor.

2.
Langmuir ; 40(9): 4893-4903, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38373200

RESUMEN

To study the crystallization behavior of polymeric chains under the influence of porosity, the thermal properties of various nonporous and porous poly(ε-caprolactone) (PCL) based constructs were investigated. Porous cross-linked PCL nanocomposite constructs were fabricated utilizing in situ polymerization of CL-based surfactant-free Pickering high internal phase emulsions (HIPEs), stabilized using modified fumed silica nanoparticles (mSiNP) at a minimal concentration of 0.6 wt %. The corresponding nanocomposite constructs exhibited polyhedral pore morphology with significant pore roughness due to the presence of mSiNP. DSC thermograms of nonporous constructs illustrated diminished crystallization temperature and kinetics upon cross-linking and inclusion of mSiNP which confirmed suppressed mobility of polymer chains. Further introduction of porosity led to substantial supercooling, resulting in crystallization temperatures as low as -24 °C. Changes in the crystal structure of various nonporous and porous constructs were also studied using XRD. The crystallization behavior of porous constructs was finally evaluated using Jeziorny, Ozawa, and Mo theories under nonisothermal conditions. Significant deviation from the theoretical model, as observed in the case of porous constructs, implied a complex crystallization mechanism that eventually was not only controlled by the chain immobility due to cross-linking but also heterogeneity present in the wall thickness of the constructs. The unique melting-crystallization phenomenon observed in such constructs may further be expanded to other systems of high heat capacity for utilization as energy storage materials.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37874931

RESUMEN

Solid polymer electrolytes (SPEs) have emerged as a viable alternative to traditional organic liquid-based electrolytes for high energy density and safer lithium batteries. Poly(ethylene oxide) (PEO)-based SPEs are considered one of the mainstream SPE materials with excellent dissociation ability of lithium salts. However, the inferior ionic conductivity at room temperature and poor dimensional stability at high temperature limit their utilization. In this work, a semi-interpenetrating polymer network (semi-IPN) forming a precursor based on an ionic liquid (IL) monomer and linear PEO chains were introduced into an electrospun poly(acrylonitrile) (PAN) fibrous mat with subsequent thermal-initiated cross-linking. 1,4-Diazabicyclo [2.2.2] octane (DABCO) and 4-(chloromethyl) styrene were used to synthesize the styrenic-DABCO-based IL monomer with bis(trifluoromethane sulfonyl)imide (TFSI-) or bis(fluoromethane sulfonyl)imide (FSI-) as the anion, named as SDTFSI and SDFSI, respectively. Together, the FSI- and TFSI- anions demonstrate a synergistic effect in providing ion-conductive LiF and Li3N-rich inorganic SEI layer with enhanced lithium dendrite suppression ability. The twofold reinforcement effect is achieved collectively from the semi-IPN structure and the three-dimensional (3D) PAN network that help to construct highly efficient and uniform ion transport channels with excellent flexibility, further suppressing the lithium dendrite growth. The SPEs were dimensionally stable even at elevated temperatures of 150 °C. Moreover, the SPEs show an ionic conductivity of 4.4 × 10-4 S cm-1 at 25 °C and 1.81 × 10-3 S cm-1 at 55 °C and a lithium-ion transference number of 0.56. The favorable electrochemical performance of the SPEs was verified by operating LiFePO4/Li and NMC/Li cells.

4.
ACS Appl Mater Interfaces ; 15(35): 41961-41976, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37624730

RESUMEN

Biobased membranes made with green solvents have numerous advantages in the water purification industry; however, their long-term use is impeded by severe membrane fouling and low structural stability. Herein, we proposed a facile and green approach to fabricate an eco-friendly and biodegradable electrospun membrane by simply blending polycaprolactone (PCL) with sulfonated kraft lignin (SKL) in a green solvent (i.e., acetic acid) without needing any additional post-treatment. We investigated the influence of SKL content on the surface morphology, chemical composition, and mechanical properties of the electrospun membrane. The SKL-modified membranes (L-5 and L-10) showed superhydrophilicity and underwater superoleophobicity with a water contact angle (WCA) of 0° (<3 s) and an underwater-oil contact angle (UWOCA) over 150° due to the combined effect of surface roughness and hydrophilic chemical functionality. Furthermore, the as-prepared membranes demonstrated excellent pure water flux of 800-900 LMH and an emulsion flux of 170-480 LMH during the gravity-driven filtration of three surfactant-stabilized oil-in-water emulsions, namely, mineral oil/water, gasoline/water, and n-hexadecane/water emulsions. In addition, these membranes exhibited superior antioil-fouling performance with excellent separation efficiency (97-99%) and a high flux recovery ratio (>98%). The 10 wt % SKL-incorporated membrane (L-10) also showed consistent separation performance after 10 cyclic tests, indicating its excellent reusability and recyclability. Furthermore, the stability of the membrane under harsh pH conditions was also evaluated and proved to be robust enough to maintain its wettability in a wide pH range (pH 1-10).

5.
Phys Rev E ; 107(4-2): 045103, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37198839

RESUMEN

Electrohydrodynamic (EHD) jet printing involves the deposition of a liquid jet issuing from a needle stretched under the effect of a strong electric field between the needle and a collector plate. Unlike the geometrically independent classical cone-jet observed at low flow rates and high applied electric fields, at a relatively high flow rate and moderate electric field, EHD jets are moderately stretched. Jetting characteristics of such moderately stretched EHD jets differ from the typical cone-jet due to the nonlocalized cone-to-jet transition. Hence, we describe the physics of the moderately stretched EHD jet applicable to the EHD jet printing process through numerical solutions of a quasi-one-dimensional model of the EHD jet and experiments. Through comparison with experimental measurements, we show that our simulations correctly predict the jet shape for varying flow rates and applied potential difference. We present the physical mechanism of inertia-dominated slender EHD jets based on the dominant driving and resisting forces and relevant dimensionless numbers. We show that the slender EHD jet stretches and accelerates primarily due to the balance of driving tangential electric shear and resisting inertia forces in the developed jet region, whereas in the vicinity of the needle, driving charge repulsion and resisting surface tension forces govern the cone shape. The findings of this study can help in operational understanding and better control of the EHD jet printing process.

6.
Langmuir ; 39(17): 6231-6239, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37074843

RESUMEN

In the present work, we report the fabrication and characterization of well-defined core-satellite nanostructures. These nanostructures comprise block copolymer (BCP) micelles, containing a single gold nanoparticle (AuNP) in the core and multiple photoluminescent cadmium selenide (CdSe) quantum dots (QDs) attached to the micelle's coronal chains. The asymmetric polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) BCP was employed to develop these core-satellite nanostructures in a series of P4VP-selective alcoholic solvents. The BCP micelles were first prepared in 1-propanol and subsequently mixed with AuNPs, followed by gradual addition of CdSe QDs. This method resulted in the development of spherical micelles that contained a PS/Au core and a P4VP/CdSe shell. These core-satellite nanostructures, developed in different alcoholic solvents, were further employed for the time-resolved photoluminescence analysis. It was found that solvent-selective swelling of the core-satellite nanostructures tunes the distance between the QDs and AuNPs and modulates their Förster resonance energy transfer (FRET) behavior. The average lifetime of the donor emission varied from 12.3 to 10.3 nanoseconds (ns) with the change in the P4VP-selective solvent within the core-satellite nanostructures. Furthermore, the distances between the donor and acceptor were also calculated using efficiency measurements and corresponding Förster distances. The resulting core-satellite nanostructures hold promising potential in various fields, such as photonics, optoelectronics, and sensors that utilize the FRET process.

7.
Environ Res ; 228: 115928, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37076032

RESUMEN

Heavy metals and plastic pollutants are the two most disastrous challenges to the environment requiring immediate actions. In this work, a techno-commercially feasible approach to address both challenges is presented, where a waste polypropylene (PP) based reversible sensor is produced to selectively detect copper ions (Cu2+) in blood and water from different sources. The waste PP-based sensor was fabricated in the form of an emulsion-templated porous scaffold decorated with benzothiazolinium spiropyran (BTS), which produced a reddish colour upon exposure to Cu2+. The presence of Cu2+ was checked by naked eye, UV-Vis spectroscopy, and DC (Direct Current) probe station by measuring the current where the sensor's performance remained unaffected while analysing blood, water from different sources, and acidic or basic environment. The sensor exhibited 1.3 ppm as the limit of detection value in agreement with the WHO recommendations. The reversible nature of the sensor was determined by cyclic exposure of the sensor towards visible light turning it from coloured to colourless within 5 min and regenerated the sensor for the subsequent analysis. The reversibility of the sensor through exchange between Cu2+- Cu+ was confirmed by XPS analysis. A resettable and multi-readout INHIBIT logic gate was proposed for the sensor using Cu2+ and visible light as the inputs and colour change, reflectance band and current as the output. The cost-effective sensor enabled rapid detection of the presence of Cu2+ in both water and complex biological samples such as blood. While the approach developed in this study provides a unique opportunity to address the environmental burden of plastic waste management, it also allows for the possible valorization of plastics for use in enormous value-added applications.


Asunto(s)
Sangre , Cobre , Metales Pesados , Polipropilenos , Cobre/química , Iones/análisis , Agua
8.
Langmuir ; 39(5): 1927-1946, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36701663

RESUMEN

In the realm of biomaterials, particularly bone tissue engineering, there has been a great increase in interest in scaffolds with hierarchical porosity and customizable multifunctionality. Recently, the three-dimensional (3D) printing of biopolymer-based inks (solutions or emulsions) has gained high popularity for fabricating tissue engineering scaffolds, which optimally satisfies the desired properties and performances. Herein, therefore, we explore the fabrication of 3D printed hierarchical porous scaffolds of poly(ε-caprolactone) (PCL) using the water-in-oil (w/o) Pickering PCL high internal phase emulsions (HIPEs) as the ink in 3D printer. The Pickering PCL HIPEs stabilized using hydrophobically modified nanoclay comprised of aqueous poly(vinyl alcohol) (PVA) as the dispersed phase. Rheological measurements suggested the shear thinning behavior of Pickering HIPEs having a dispersed droplet diameter of 3-25 µm. The pore morphology resembling the natural extracellular matrix and the mechanical properties of scaffolds were customized by tuning the emulsion composition and 3D printing parameters. In vitro biomineralization and drug release studies proved the scaffolds' potential in developing the apatite-rich bioactive interphase and controlled drug delivery, respectively. During in vitro osteoblast (MG63) growth experiments for up to 7 days, good adhesion and proliferation on PCL scaffolds confirmed their cytocompatibility, assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) analysis. This study suggests that the assembly of HIPE templates and 3D printing is a promising approach to creating hierarchical porous scaffolds potentially suitable for bone tissue engineering and can be stretched to other biopolymers as well.


Asunto(s)
Poliésteres , Andamios del Tejido , Emulsiones , Porosidad , Ingeniería de Tejidos/métodos , Impresión Tridimensional
9.
Int J Pharm ; 633: 122611, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36646256

RESUMEN

High internal phase emulsion (HIPE) templated poly (ɛ-caprolactone) (PCL) scaffolds have gained widespread attention for large-sized bone defects due to its tuneable 3D architecture and ease of fabricating crosslinked PCL (cPCL) scaffolds. However, extremely high stabilizer (surfactant or nanoparticle) concentration and negligence of microenvironment for regeneration sites like alveolar bones have restrained industrial acceptance of these scaffolds. Herein, we demonstrated the fabrication of nanocomposite cPCL scaffolds within Pickering HIPE templates stabilized using modified silica nanoparticles (mSiNP) concentrations as low as 0.1 to 1.0 wt%. Using an unconventional approach, the mSiNP Pickering stabilizer was added in dispersed phase, contradicting Bancroft's rule. The colloidal stability was attained due to faster drifting of mSiNP towards the interface when it was dispersed in silicone oil. Scaffolds with tuneable properties were fabricated by controlling the mSiNP concentration and ϕd. Further, cPCL scaffolds were functionalized using clove oil (CO) to improve their efficiency in eradicating S. aureus and E. coli by disrupting their cellular integrity. Additionally, formation of biofilm on the surface of the scaffolds was successfully inhibited by the incorporation of CO. CO-functionalized scaffolds demonstrated excellent cytocompatibility towards MG-63 cells allowing their successful adhesion and proliferation on the surface of the scaffolds.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Poliésteres , Emulsiones , Escherichia coli , Staphylococcus aureus , Dióxido de Silicio
10.
ACS Appl Mater Interfaces ; 14(48): 54233-54244, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36404643

RESUMEN

A worldwide steady increase in oily wastewater, due to oil spillage and various industrial discharges, requires immediate efforts toward development of an effective strategy and materials to preserve the natural water bodies. Designing a superwettable fibrous membrane of robust structure and anti-fouling property for efficient separation of oil-water mixtures and emulsions is therefore highly demanding. The electrospun fibrous membrane, which possesses porosity and flexibility and properties including superwettability and tunable functionality, can be considered as apposite materials for this cause. In this approach, we combined two strategies, viz., Pickering emulsion and near gel resin (nGR) emulsion electrospinning together to produce a fibrous nanocomposite membrane for efficient oil-water separation and demulsification. nGR Pickering emulsions were stabilized using hydrophilic SiO2 nanoparticles and successfully optimized for fabricating the crosslinked core sheath-structured fibrous membrane. The prepared membrane provided twofold functionality due to the core sheath structure of the fibers. The crosslinked polystyrene core offered high oil adsorption capacity, whereas SiO2-functionalized crosslinked polyvinyl alcohol sheath provided a rough, superhydrophilic surface with underwater oleophobic behavior to the membrane. The optimized SiO2-Pickering emulsion-templated nanocomposite membrane demonstrated excellent underwater anti-oil adhesion behavior (UWOCA ∼148°) with efficient oil-water separation capacity of more than 99% and separation flux up to 3346 ± 91 L m-2 h-1. The membrane was evaluated against various oil-water emulsions and found to have a superior separation efficiency. Moreover, excellent anti-oil adhesion property provided the intact membrane, where consistent separation performance was achieved up to 10 separation cycles without any loss. The membrane was used for separation of hot oil-water emulsions and showed no structural disintegration or loss in separation performance when exposed to elevated temperatures. The developed nanocomposite membranes could efficiently be used for separation and demulsification, and their applications can be explored in various other fields including selective sorption, catalysis, and storage in future.

11.
Waste Manag ; 154: 175-186, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36244206

RESUMEN

This study presents a novel recycling scheme for spent Li-ion batteries that involves the leaching of lithium in hot water followed by the dissolution of all transition metals in HCl solution and their separation using the ionic liquid Cyphos IL104. The parametric studies revealed that >84 % Li was dissolved while the cathode material was leached at 90 °C for 2 h. Approximately 98 % Li from the non-acidic solution was directly precipitated as Li2CO3 at a Li+:CO32- ratio of 1:1.5. The transition metals from the Li-depleted cathode mass were efficiently (>98 %) dissolved in 3.0 mol·L-1 HCl at 90 °C for a 3 h leaching process. Manganese from the chloride leach liquor was selectively precipitated by adding KMnO4 at a 1.25-fold higher quantity than the stoichiometric ratio, pH value 2.0, and temperature 80 °C. The remaining co-existing metals (Ni and Co) were separated from the chloride solution by contacting it with a phosphonium-based ionic liquid at an equilibrium pH value of 5.4 and an organic-to-aqueous phase ratio of 2/3. The loaded ionic liquid was quantitatively stripped in 2.0 mol·L-1 H2SO4 solution, which yielded high-purity CoSO4·xH2O crystals after evaporation of the stripped liquor. Subsequently, ∼99 % nickel was recovered as nickel carbonate [NiCO3·2Ni(OH)2] from the Co-depleted raffinate by the precipitation performed at Ni2+:CO32- ratio of 1:2.5, pH value of 10.8, and temperature of 50 °C. Finally, a process flow with mass and energy balances yielding a high recovery rate of all metals in the exhausted cathode powder of spent LiBs was proposed.

12.
Chem Commun (Camb) ; 58(10): 1468-1480, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35014993

RESUMEN

The role of poly(ε-caprolactone) (PCL) and its 3D scaffolds in tissue engineering has already been established due to its ease of processing into long-term degradable implants and approval from the FDA. This review presents the role of high internal phase emulsion (HIPE) templating in the fabrication of PCL scaffolds, and the versatility of the technique along with challenges associated with it. Considering the huge potential of HIPE templating, which so far has mainly been focused on free radical polymerization of aqueous HIPEs, we provide a summary of how the technique has been expanded to non-aqueous HIPEs and other modes of polymerization such as ring-opening. The scope of coupling of HIPE templating with some of the advanced fabrication methods such as 3D printing or electrospinning is also explored.


Asunto(s)
Emulsiones/química , Poliésteres/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Proliferación Celular/efectos de los fármacos , Radicales Libres/química , Porosidad , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido/química
13.
Chemosphere ; 286(Pt 3): 131978, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34426287

RESUMEN

The present study dealt with the restricted microbial tolerance for lead and tin during bioleaching of waste printed circuit boards (WPCBs) and lower extraction yields of valuable metals. Pretreatment of WPCBs in 4.0 mol/L HNO3 at 90 °C for 180 min duration prominently dissolved the toxicant metals before the microbial mobilization of valuable metals. Acid pretreatment followed the first-order kinetics that exhibiting an intermediate-controlled mechanism with the apparent activation energy determined to be Ea(Pb), 25.1 kJ/mol and Ea(Sn), 21.9 kJ/mol. Thereafter, the parametric optimization of aeration rate, O2-enrichment, external CO2 supply, temperature, and time for bioleaching of ground WPCBs was examined using Sulfobacillus thermosulfidooxidans (strain RDB). A favourable condition for Cu-bioleaching under higher oxidative environment in comparison to Ni and Zn exhibited the auto-catalytic behaviour of Cu2+ in the biological system. More than 92% of valuable metals were extracted under the optimal condition of aeration rate, 0.5 L/min; O2-enrichement dosage, 30%; external CO2 supply, 0.1%; temperature, 55 °C; and time, 18 days. The bioleaching kinetics followed shrinking core model that exhibiting the shifting of mass transfer from chemically-controlled to the diffusion-controlled mechanism. This process offers two-fold advantages that restoring the valuable metals with low-emission biotechnological route for waste valorization.


Asunto(s)
Residuos Electrónicos , Clostridiales , Residuos Electrónicos/análisis , Residuos Peligrosos , Cinética , Reciclaje
14.
J Hazard Mater ; 416: 125769, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33857808

RESUMEN

An innovative process integration for the sustainable recovery of critical metals from waste printed circuit boards (WPCBs) is demonstrated. In the acid pre-treatment of WPCBs, > 95% of highly toxic metals lead and tin could dissolve after 240 min of contact in 4.0 mol L-1 HNO3. Thereafter, the microbial activity of Sulfobacillus thermosulfidooxidans (strain RDB) under intense aeration is found favorable for base metals' liberation. ~92% copper, 89% nickel, and 93% zinc get extracted at the optimal condition of O2-mixed-aeration, 30%; pulp density, 10 g L-1; aeration rate, 0.5 L min-1; sulfur dosage, 2%; temperature, 45 °C; and duration, 21 days. Quantitative separation of base metals is achieved using ketoxime as a function of equilibrium pH that yielding pH0.5 order: Cu (1.45) < Ni (5.7) < Zn (8.1). The residual gold from WPCBs is uniquely leached (~99% efficiency) in brine solution (2.0 mol L-1 NaCl) under the electro-chlorination rate, 0.62 mmol min-1; dissolution pH, 1.0; pulp density, 20 g L-1; temperature, 30 °C; and time, 60 min. Subsequently, gold from brine solution is solvated with tri-butyl-phosphate at pHeq, ≤ 0.5, forming [2(RP=O)·HAuCl4·H2O]¯ complex in the organic phase. Finally, > 99% of high-purity gold is stripped from loaded organic while contacting ammoniacal thiosulfate solution in two-stages of counter-current flow.


Asunto(s)
Residuos Electrónicos , Clostridiales , Cobre , Residuos Electrónicos/análisis , Halogenación , Residuos Peligrosos , Concentración de Iones de Hidrógeno , Reciclaje
15.
Chem Commun (Camb) ; 57(4): 544-547, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33336658

RESUMEN

An in situ encapsulation strategy for embedding sulfur within carbon (S@C) fiber through a sustainable and scalable route using waste cotton cloth as a fiber template, is developed. The S@C fibers with reasonably high sulfur content of ∼71% displayed promising electrochemical performance when employed as a cathode material for a lithium sulfur battery (LSB). The S@C fibers developed herein have the potential to be used as a promising cathode material for other sulfur-based batteries as well.

16.
Waste Manag ; 121: 175-185, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33360816

RESUMEN

This study has attempted to ascertain the linkages between circular bio-economy (CirBioeco) and recycling of electronic (e-)waste by applying microbial activities instead of the smelter and chemical technologies. To build the research hypothesis, the advances on biotechnology-driven recycling processes for metals extraction from e-waste has been analyzed briefly. Thereafter, based on the potential of microbial techniques and research hypothesis, the structural model has been tested for a significance level of 99%, which is supported by the corresponding standardization co-efficient values. A prediction model applied to determine the recycling impact on CirBioeco indicates to re-circulate 51,833 tons of copper and 58 tons of gold by 2030 for the production of virgin metals/raw-materials, while recycling rate of the accumulated e-waste remains to be 20%. This restoration volume of copper and gold through the microbial activities corresponds to mitigate 174 million kg CO2 emissions and 24 million m3 water consumption if compared with the primary production activities. The study potentially opens a new window for environmentally-friendly biotechnological recycling of e-waste under the umbrella concept of CirBioeco.


Asunto(s)
Residuos Electrónicos , Cobre , Residuos Electrónicos/análisis , Electrónica , Oro , Reciclaje
17.
Polymers (Basel) ; 12(12)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260411

RESUMEN

The present work is focused on the synthesis of bio-based thermoset polymers and their thermo-oxidative ageing and biodegradability. Toward this aim, bio-based thermoset resins with different chemical architectures were synthesized from lactic acid by direct condensation with ethylene glycol, glycerol and pentaerythritol. The resulting branched molecules with chain lengths (n) of three were then end-functionalized with methacrylic anhydride. The chemical structures of the synthesized lactic acid derivatives were confirmed by proton nuclear magnetic resonance spectroscopy (1H-NMR) and Fourier transform infrared spectroscopy (FT-IR) before curing. To evaluate the effects of structure on their properties, the samples were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and the tensile testing. The samples went through thermo-oxidative ageing and biodegradation; and their effects were investigated. FT-IR and 1H-NMR results showed that three different bio-based resins were synthesized using polycondensation and end-functionalization. Lactic acid derivatives showed great potential to be used as matrixes in polymer composites. The glass transition temperature of the cured resins ranged between 44 and 52 °C. Pentaerythritol/lactic acid cured resin had the highest tensile modulus and it was the most thermally stable among all three resins. Degradative processes during ageing of the samples lead to the changes in chemical structures and the variations in Young's modulus. Microscopic images showed the macro-scale surface degradation on a soil burial test.

18.
Chem Commun (Camb) ; 56(83): 12604-12607, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-32945295

RESUMEN

A macrocellular nanocomposite scaffold of crosslinked poly(ε-caprolactone) was made by conducting a ring-opening polymerization of an emulsifier-free Pickering high internal phase emulsion (HIPE). The Pickering HIPE formulation, stabilized using hydrophobically modified silica nanoparticles (mSiNPs), showed extraordinary stability up to a temperature of polymerization as high as 120 °C. The nanocomposite scaffolds demonstrated high porosity and a liquid uptake capacity of up to ∼23 g g-1. The scaffolds decorated with mSiNPs were mechanically robust and showed high resiliency under cyclic compression tests.

19.
Sci Total Environ ; 749: 141652, 2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-32822917

RESUMEN

The isolation wards, institutional quarantine centers, and home quarantine are generating a huge amount of bio-medical waste (BMW) worldwide since the outbreak of novel coronavirus disease-2019 (COVID-19). The personal protective equipment, testing kits, surgical facemasks, and nitrile gloves are the major contributors to waste volume. Discharge of a new category of BMW (COVID-waste) is of great global concern to public health and environmental sustainability if handled inappropriately. It may cause exponential spreading of this fatal disease as waste acts as a vector for SARS-CoV-2, which survives up to 7 days on COVID-waste (like facemasks). Proper disposal of COVID-waste is therefore immediately requires to lower the threat of pandemic spread and for sustainable management of the environmental hazards. Henceforth, in the present article, disinfection technologies for handling COVID-waste from its separate collection to various physical and chemical treatment steps have been reviewed. Furthermore, policy briefs on the global initiatives for COVID-waste management including the applications of different disinfection techniques have also been discussed with some potential examples effectively applied to reduce both health and environmental risks. This article can be of great significance to the strategy development for preventing/controlling the pandemic of similar episodes in the future.


Asunto(s)
COVID-19 , Residuos Sanitarios , Administración de Residuos , Desinfección , Hospitales , Humanos , SARS-CoV-2 , Tecnología
20.
Polymers (Basel) ; 12(8)2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824691

RESUMEN

Porous poly(ε-caprolactone) (PCL) scaffolds were fabricated using the high internal polymerization emulsion (HIPE) technique. Bis(ε-caprolactone-4-yl) (BCY) was utilized as crosslinker. The crosslinking density and the volume fraction of the dispersed phase were varied in order to study the potential effect of these parameters on the hydrolytic degradation at 37 °C and 60 °C. After different hydrolysis times the remaining solid samples were analyzed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), while the degradation products in the aqueous aging solutions were analyzed by laser desorption ionization-mass spectrometry (LDI-MS). The effect of temperature on the degradation process and release of degradation products was, as expected, significant. The temperature effect was also shown by FTIR analysis that displayed a pronounced increase in the intensity of the hydroxyl-group absorption band after 70 days of hydrolysis at 60 °C indicating significant cleavage of the polymer chains. LDI-MS analysis proved the release of oligomers ranging from dimers to hexamers. The product patterns were similar, but the relative m/z signal intensities increased with increasing time, temperature and crosslinking density, indicating larger amounts of released products. The latter is probably due to the decreasing degree of crystallinity as a function of amount of crosslinker. The porous structure and morphology of the scaffolds were lost during the aging. The higher the crosslinking density, the longer the scaffolds retained their original porous structure and morphology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...