Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Methods Mol Biol ; 2755: 63-74, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38319569

RESUMEN

Sensitive activity stains for enzymes selectively expressed in human cancers offer valuable tools for imaging with wide applications in experimental, diagnostic, and therapeutic settings. The scant expression of the antioxidant enzyme NQO1 in normal tissues and its great abundance in malignant counterparts due to the increased redox stress and hypoxia is one such example. Previously, we described a potent nontoxic probe that remains nonfluorescent but releases an intense fluorogenic compound after intracellular cleavage by NQO1 catalysis. This infrared probe with a 644 nm emission has excellent tissue penetrating ability and low background absorption. Described here are methods (fluorescence microscopy, flow cytometry, and in vivo animal imaging) to rapidly image NQO1 activity in hypoxic and non-hypoxic cancer cells and tumors developed in live mouse xenograft models. The specificity of the dye for NQO1 in all three procedures was verified, and the methods should be useful for both in vitro and in vivo studies.


Asunto(s)
Neoplasias , Humanos , Animales , Ratones , Xenoinjertos , Ratones Desnudos , Trasplante Heterólogo , Neoplasias/diagnóstico por imagen , Microscopía Fluorescente , Modelos Animales de Enfermedad , Hipoxia , NAD(P)H Deshidrogenasa (Quinona)
2.
Genes (Basel) ; 12(6)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201219

RESUMEN

Background: The therapeutically important DNA repair gene O6-methylguanine DNA methyltransferase (MGMT) is silenced by promoter methylation in human brain cancers. The co-players/regulators associated with this process and the subsequent progression of MGMT gene transcription beyond the non-coding exon 1 are unknown. As a follow-up to our recent finding of a predicted second promoter mapped proximal to the exon 2 [Int. J. Mol. Sci.2021, 22(5), 2492], we addressed its significance in MGMT transcription. Methods: RT-PCR, RT q-PCR, and nuclear run-on transcription assays were performed to compare and contrast the transcription rates of exon 1 and exon 2 of the MGMT gene in glioblastoma cells. Results: Bioinformatic characterization of the predicted MGMT exon 2 promoter showed several consensus TATA box and INR motifs and the absence of CpG islands in contrast to the established TATA-less, CpG-rich, and GAF-bindable exon 1 promoter. RT-PCR showed very weak MGMT-E1 expression in MGMT-proficient SF188 and T98G GBM cells, compared to active transcription of MGMT-E2. In the MGMT-deficient SNB-19 cells, the expression of both exons remained weak. The RT q-PCR revealed that MGMT-E2 and MGMT-E5 expression was about 80- to 175-fold higher than that of E1 in SF188 and T98G cells. Nuclear run-on transcription assays using bromo-uridine immunocapture followed by RT q-PCR confirmed the exceptionally lower and higher transcription rates for MGMT-E1 and MGMT-E2, respectively. Conclusions: The results provide the first evidence for transcriptional pausing at the promoter 1- and non-coding exon 1 junction of the human MGMT gene and its activation/elongation through the protein-coding exons 2 through 5, possibly mediated by a second promoter. The findings offer novel insight into the regulation of MGMT transcription in glioma and other cancer types.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Proteínas Supresoras de Tumor/genética , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Metilación de ADN , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Exones , Glioblastoma/genética , Humanos , Regiones Promotoras Genéticas , Proteínas Supresoras de Tumor/metabolismo
3.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801310

RESUMEN

BACKGROUND: The molecular regulation of increased MGMT expression in human brain tumors, the associated regulatory elements, and linkages of these to its epigenetic silencing are not understood. Because the heightened expression or non-expression of MGMT plays a pivotal role in glioma therapeutics, we applied bioinformatics and experimental tools to identify the regulatory elements in the MGMT and neighboring EBF3 gene loci. RESULTS: Extensive genome database analyses showed that the MGMT genomic space was rich in and harbored many undescribed RNA regulatory sequences and recognition motifs. We extended the MGMT's exon-1 promoter to 2019 bp to include five overlapping alternate promoters. Consensus sequences in the revised promoter for (a) the transcriptional factors CTCF, NRF1/NRF2, GAF, (b) the genetic switch MYC/MAX/MAD, and (c) two well-defined p53 response elements in MGMT intron-1, were identified. A putative protein-coding or non-coding RNA sequence was located in the extended 3' UTR of the MGMT transcript. Eleven non-coding RNA loci coding for miRNAs, antisense RNA, and lncRNAs were identified in the MGMT-EBF3 region and six of these showed validated potential for curtailing the expression of both MGMT and EBF3 genes. ChIP analysis verified the binding site in MGMT promoter for CTCF which regulates the genomic methylation and chromatin looping. CTCF depletion by a pool of specific siRNA and shRNAs led to a significant attenuation of MGMT expression in human GBM cell lines. Computational analysis of the ChIP sequence data in ENCODE showed the presence of NRF1 in the MGMT promoter and this occurred only in MGMT-proficient cell lines. Further, an enforced NRF2 expression markedly augmented the MGMT mRNA and protein levels in glioma cells. CONCLUSIONS: We provide the first evidence for several new regulatory components in the MGMT gene locus which predict complex transcriptional and posttranscriptional controls with potential for new therapeutic avenues.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Supresoras de Tumor/metabolismo , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Genómica , Glioma/genética , Glioma/patología , Humanos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor Nuclear 1 de Respiración/genética , Factor Nuclear 1 de Respiración/metabolismo , Regiones Promotoras Genéticas , ARN Interferente Pequeño/genética , ARN no Traducido/genética , Proteínas Supresoras de Tumor/genética
4.
Methods Mol Biol ; 2193: 85-96, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32808261

RESUMEN

Lymphangiogenesis, the formation of lymphatic vessels from preexisting ones, is an important process in wound-healing physiology. Deregulation of lymphangiogenesis and lymphatic vascular remodeling have been implicated in a range of inflammatory conditions, such as lymphedema, lymphadenopathy, tumor growth, and cancer metastasis. Any attempt in understanding various parameters of the lymphangiogenic process and developing desirable therapeutic targets requires recapitulating these conditions in in vivo models. One pitfall with some experimental models is the absence of immune response, an important regulatory factor for lymphangiogenesis. We overcome this issue by using immune competent mice. In this chapter, by using Angiopoietin-2 (Ang2), a protein that belongs to the Ang/Tie signaling pathway, we describe the ear sponge assay with important adaptations, highlighting a reproducible and quantitative tool for assessment of in vivo lymphangiogenesis.


Asunto(s)
Bioensayo/métodos , Oído/fisiopatología , Linfangiogénesis/fisiología , Vasos Linfáticos/fisiología , Angiopoyetina 2/genética , Animales , Oído/cirugía , Humanos , Inmunidad/inmunología , Inmunidad/fisiología , Linfangiogénesis/genética , Linfangiogénesis/inmunología , Vasos Linfáticos/inmunología , Ratones , Transducción de Señal/genética , Remodelación Vascular/genética , Remodelación Vascular/inmunología , Remodelación Vascular/fisiología , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología
5.
Cells ; 9(7)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630235

RESUMEN

There is a desperate need for novel and efficacious chemotherapeutic strategies for human brain cancers. There are abundant molecular alterations along the p53 and MDM2 pathways in human glioma, which play critical roles in drug resistance. The present study was designed to evaluate the in vitro and in vivo antitumor activity of a novel brain-penetrating small molecule MDM2 degrader, termed SP-141. In a panel of nine human glioblastoma and medulloblastoma cell lines, SP-141, as a single agent, potently killed the brain tumor-derived cell lines with IC50 values ranging from 35.8 to 688.8 nM. Treatment with SP-141 resulted in diminished MDM2 and increased p53 and p21cip1 levels, G2/M cell cycle arrest, and marked apoptosis. In intracranial xenograft models of U87MG glioblastoma (wt p53) and DAOY medulloblastoma (mutant p53) expressing luciferase, treatment with SP-141 caused a significant 4- to 9-fold decrease in tumor growth in the absence of discernible toxicity. Further, combination treatment with a low dose of SP-141 (IC20) and temozolomide, a standard anti-glioma drug, led to synergistic cell killing (1.3- to 31-fold) in glioma cell lines, suggesting a novel means for overcoming temozolomide resistance. Considering that SP-141 can be taken up by the brain without the need for any special delivery, our results suggest that SP-141 should be further explored for the treatment of tumors of the central nervous system, regardless of the p53 status of the tumor.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Indoles/farmacología , Meduloblastoma/metabolismo , Terapia Molecular Dirigida/métodos , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Piridinas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Humanos , Indoles/uso terapéutico , Concentración 50 Inhibidora , Meduloblastoma/tratamiento farmacológico , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Piridinas/uso terapéutico , Temozolomida/farmacología , Temozolomida/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Sci Rep ; 9(1): 8577, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31189950

RESUMEN

The Near-infrared Fluorescence (NIRF) molecular imaging of cancer is known to be superior in sensitivity, deeper penetration, and low phototoxicity compared to other imaging modalities. In view of an increased need for efficient and targeted imaging agents, we synthesized a NAD(P)H quinone oxidoreductase 1 (NQO1)-activatable NIR fluorescent probe (NIR-ASM) by conjugating dicyanoisophorone (ASM) fluorophore with the NQO1 substrate quinone propionic acid (QPA). The probe remained non-fluorescent until activation by NQO1, whose expression is largely limited to malignant tissues. With a large Stokes shift (186 nm) and a prominent near-infrared emission (646 nm) in response to NQO1, NIR-ASM was capable of monitoring NQO1 activity in vitro and in vivo with high specificity and selectivity. We successfully employed the NIR-ASM to differentiate cancer cells from normal cells based on NQO1 activity using fluorescence microscopy and flow cytometry. Chemical and genetic approaches involving the use of ES936, a specific inhibitor of NQO1 and siRNA and gene transfection procedures unambiguously demonstrated NQO1 to be the sole target activating the NIR-ASM in cell cultures. NIR-ASM was successfully used to detect and image the endogenous NQO1 in three live tumor-bearing mouse models (A549 lung cancer, Lewis lung carcinoma, and MDMAMB 231 xenografts) with a high signal-to-low noise ratiometric NIR fluorescence response. When the NQO1-proficient A549 tumors and NQO1-deficient MDA-MB-231 tumors were developed in the same animal, only the A549 malignancies activated the NIR-ASM probe with a strong signal. Because of its high sensitivity, rapid activation, tumor selectivity, and nontoxic properties, the NIR-ASM appears to be a promising agent with clinical applications.


Asunto(s)
Colorantes Fluorescentes/química , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/metabolismo , Células A549 , Animales , Femenino , Citometría de Flujo , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Microscopía Fluorescente , NAD(P)H Deshidrogenasa (Quinona)/genética , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , Neoplasias Experimentales/genética
7.
Cancers (Basel) ; 10(12)2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487423

RESUMEN

Human NAD(P)H quinone oxidoreductase-1 (hNQO1) is an important cancer-related biomarker, which shows significant overexpression in malignant cells. Developing an effective method for detecting NQO1 activity with high sensitivity and selectivity in tumors holds a great potential for cancer diagnosis, treatment, and management. In the present study, we report a new dicyanoisophorone (DCP) based fluorescent probe (NQ-DCP) capable of monitoring hNQO1 activity in vitro and in vivo in both ratiometric and turn-on model. NQ-DCP was prepared by conjugating dicyanoisophorone fluoroprobe with hNQO1 activatable quinone propionic acid (QPA), which remain non-fluorescent until activation by tumor-specific hNQO1. NQ-DCP featured a large Stokes shift (145 nm), excellent biocompatibility, cell permeability, and selectivity towards hNQO1 allowed to differentiate cancer cells from healthy cells. We have successfully employed NQ-DCP to monitor non-invasive endogenous hNQO1 activity in brain tumor cells in vitro and in xenografted tumors developed in nude mice.

8.
Carcinogenesis ; 39(11): 1399-1410, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30010803

RESUMEN

The molecular basis of anticancer and apoptotic effects of R-goniothalamin (GON), a plant secondary metabolite was studied. We show that induction of oxidative stress and reactivation of mutant p53 underlie the strong cytotoxic effects of GON against the breast cancer cells. While GON was not toxic to the MCF10a breast epithelial cells, the SKBR3 breast cancer cells harboring an R175H mutant p53 were highly sensitive (IC50 = 7.3 µM). Flow cytometry and other pertinent assays showed that GON-induced abundant reactive oxygen species (ROS), glutathione depletion, protein glutathionylation and activation of apoptotic markers. GON was found to conjugate with glutathione both in vitro and in cells and the product was characterized by mass spectrometry. We hypothesized that the redox imbalance induced by GON may affect the structure of the R175H mutant p53 protein, and account for greater cytotoxicity. Using the SKBR3 breast cancer and p53-null H1299 lung cancer cells stably expressing the R175H p53 mutant protein, we demonstrated that GON triggers the appearance of a wild-type-like p53 protein by using conformation-specific antibodies, immunoprecipitation, DNA-binding assays and target gene expression. p53 restoration was associated with a G2/M arrest, senescence, reduced cell migration, invasion and increased cell death. GON elicited a highly synergistic cytotoxicity with cisplatin in SKBR3 cells. In SKBR3 xenografts developed in nude mice, there was a marked tumor growth delay by GON alone and GON + cisplatin combination. Our studies highlight the impact of tumor redox-stress generated by GON in activating the mutant p53 protein for greater antitumor efficacy.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Glutatión/metabolismo , Pironas/farmacología , Proteína p53 Supresora de Tumor/genética , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Mama/citología , Mama/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Cisplatino/farmacología , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Invasividad Neoplásica , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Oncotarget ; 9(51): 29727-29742, 2018 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-30038716

RESUMEN

The DNA damage repair enzyme, O6-methylguanine DNA methyltransferase (MGMT) is overexpressed in breast cancer, correlating directly with estrogen receptor (ER) expression and function. In ER negative breast cancer the MGMT promoter is frequently methylated. In ER positive breast cancer MGMT is upregulated and modulates ER function. Here, we evaluate MGMT's role in control of other clinically relevant targets involved in cell cycle regulation during breast cancer oncogenesis. We show that O6-benzylguanine (BG), an MGMT inhibitor decreases CDC2, CDC20, TOP2A, AURKB, KIF20A, cyclin B2, A2, D1, ERα and survivin and induces c-PARP and p21 and sensitizes ER positive breast cancer to temozolomide (TMZ). Further, siRNA inhibition of MGMT inhibits CDC2, TOP2A, AURKB, KIF20A, Cyclin B2, A2 and survivin and induces p21. Combination of BG+TMZ decreases CDC2, CDC20, TOP2A, AURKB, KIF20A, Cyclin A2, B2, D1, ERα and survivin. Temozolomide alone inhibits MGMT expression in a dose and time dependent manner and increases p21 and cytochrome c. Temozolomide inhibits transcription of TOP2A, AURKB, KIF20A and does not have any effect on CDC2 and CDC20 and induces p21. BG+/-TMZ inhibits breast cancer growth. In our orthotopic ER positive breast cancer xenografts, BG+/-TMZ decreases ki-67, CDC2, CDC20, TOP2A, AURKB and induces p21 expression. In the same model, BG+TMZ combination inhibits breast tumor growth in vivo compared to single agent (TMZ or BG) or control. Our results show that MGMT inhibition is relevant for inhibition of multiple downstream targets involved in tumorigenesis. We also show that MGMT inhibition increases ER positive breast cancer sensitivity to alkylator based chemotherapy.

10.
Oncotarget ; 9(40): 26109-26129, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29899846

RESUMEN

Tumor heterogeneity and drug resistance pose severe limitations to chemotherapy of colorectal cancers (CRCs) necessitating innovative approaches to trigger multiple cytocidal events for increased efficacy. Here, we developed a hybrid drug called KSS19 by combining the COX-2 selective NSAID rofecoxib with the cis-stilbene found in combretastatin A4 (CA4), a problematic, but potent antimicrotubule and anti-angiogenesis agent. The structural design of KSS19 completely prevented the isomerization of CA4 its biologically inactive trans-form. Molecular modeling showed that KSS19 bound avidly to the COX-2 active site and colchicine -binding site of tubulin, with similar docking scores of rofecoxib and CA4 respectively. KSS-19 showed potent anti-proliferative activity against a panel of colon cancer cell lines; HT29 cells, which are resistant to CA4 were 100 times more sensitive to KSS19. The hybrid drug potently inhibited the tubulin polymerization in vitro and in cells inducing a G2/M arrest and aberrant mitotic spindles. Both the basal and LPS-activated levels of COX-2 in colon cancer cells were highly suppressed by the KSS-19. The cancer cell migration/invasion was inhibited and accompanied by increased E-cadherin levels and activated NF-kB/Snail pathways in KSS19-treated cells. The drug also curtailed the formation of endothelial tubes in three-dimensional cultures of the HUVE cells at 250 nM, indicating strong anti-angiogenic properties. In subcutaneous HT29 colon cancer xenografts, KSS19, as a single agent (25 mg/kg/day) significantly inhibited the tumor growth and downregulated the intratumoral COX-2, Ki-67, the angiogenesis marker CD31, however, the cleaved caspase-3 was elevated. Collectively, KSS19 represents a rational hybrid drug with clinical relevance to CRC.

11.
Neoplasia ; 20(4): 305-323, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29510343

RESUMEN

Whether the antimutagenic DNA repair protein MGMT works solo in human cells and if it has other cellular functions is not known. Here, we show that human MGMT associates with PCNA and in turn, with the cell cycle inhibitor, p21cip1 in glioblastoma and other cancer cell lines. MGMT protein was shown to harbor a nearly perfect PCNA-Interacting Protein (PIP box) motif. Isogenic p53-null H1299 cells were engineered to express the p21 protein by two different procedures. Reciprocal immunoprecipitation/western blotting, Far-western blotting, and confocal microscopy confirmed the specific association of MGMT with PCNA and the ability of p21 to strongly disrupt the MGMT-PCNA complexes in tumor cells. Alkylation DNA damage resulted in a greater colocalization of MGMT and PCNA proteins, particularly in HCT116 cells deficient in p21 expression. p21 expression in isogenic cell lines directly correlated with markedly higher levels of MGMT mRNA, protein, activity and greater resistance to alkylating agents. In other experiments, four glioblastoma cell lines synchronized at the G1/S phase using either double thymidine or thymidine-mimosine blocks and subsequent cycling consistently showed a loss of MGMT protein at mid- to late S-phase, irrespective of the cell line, suggesting such a downregulation is fundamental to cell cycle control. MGMT protein was also specifically degraded in extracts from S-phase cells and evidence strongly suggested the involvement of PCNA-dependent CRL4Cdt2 ubiquitin-ligase in the reaction. Overall, these data provide the first evidence for non-repair functions of MGMT in cell cycle and highlight the involvement of PCNA in MGMT downregulation, with p21 attenuating the process.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Regulación hacia Abajo/genética , Glioma/genética , Fase S/genética , Proteínas Supresoras de Tumor/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Daño del ADN/genética , Fase G1/genética , Células HCT116 , Células HT29 , Humanos , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética
12.
Oncotarget ; 9(3): 3459-3482, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29423059

RESUMEN

There is great interest in repurposing disulfiram (DSF), a rapidly metabolizing nontoxic drug, for brain cancers and other cancers. To overcome the instability and low therapeutic efficacy, we engineered passively-targeted DSF-nanoparticles (DSFNPs) using biodegradable monomethoxy (polyethylene glycol) d,l-lactic-co-glycolic acid (mPEG-PLGA) matrix. The physicochemical properties, cellular uptake and the blood brain-barrier permeability of DSFNPs were investigated. The DSFNPs were highly stable with a size of ∼70 nm with a >90% entrapment. Injection of the nanoparticles labeled with HITC, a near-infrared dye into normal mice and tumor-bearing nude mice followed by in vivo imaging showed a selective accumulation of the formulation within the brain and subcutaneous tumors for >24 h, indicating an increased plasma half-life and entry of DSF into desired sites. The DSFNPs induced a potent and preferential killing of many brain tumor cell lines in cytotoxicity assays. Confocal microscopy showed a quick internalization of the nanoparticles in tumor cells followed by initial accumulation in lysosomes and subsequently in mitochondria. DSFNPs induced high levels of ROS and led to a marked loss of mitochondrial membrane potential. Activation of the MAP-kinase pathway leading to a nuclear translocation of apoptosis-inducing factor and altered expression of apoptotic and anti-apoptotic proteins were also observed. DSFNPs induced a powerful and significant regression of intracranial medulloblastoma xenografts compared to the marginal efficacy of unencapsulated DSF. Together, we show that passively targeted DSFNPs can affect multiple targets, trigger potent anticancer effects, and can offer a sustained drug supply for brain cancer treatment through an enhanced permeability retention (EPR).

13.
Cancers (Basel) ; 10(2)2018 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-29439493

RESUMEN

Isocitrate dehydrogenases 1 and 2 (IDH1,2), the key Krebs cycle enzymes that generate NADPH reducing equivalents, undergo heterozygous mutations in >70% of low- to mid-grade gliomas and ~20% of acute myeloid leukemias (AMLs) and gain an unusual new activity of reducing the α-ketoglutarate (α-KG) to D-2 hydroxyglutarate (D-2HG) in a NADPH-consuming reaction. The oncometabolite D-2HG, which accumulates >35 mM, is widely accepted to drive a progressive oncogenesis besides exacerbating the already increased oxidative stress in these cancers. More importantly, D-2HG competes with α-KG and inhibits a large number of α-KG-dependent dioxygenases such as TET (Ten-eleven translocation), JmjC domain-containing KDMs (histone lysine demethylases), and the ALKBH DNA repair proteins that ultimately lead to hypermethylation of the CpG islands in the genome. The resulting CpG Island Methylator Phenotype (CIMP) accounts for major gene expression changes including the silencing of the MGMT (O6-methylguanine DNA methyltransferase) repair protein in gliomas. Glioma patients with IDH1 mutations also show better therapeutic responses and longer survival, the reasons for which are yet unclear. There has been a great surge in drug discovery for curtailing the mutant IDH activities, and arresting tumor proliferation; however, given the unique and chronic metabolic effects of D-2HG, the promise of these compounds for glioma treatment is uncertain. This comprehensive review discusses the biology, current drug design and opportunities for improved therapies through exploitable synthetic lethality pathways, and an intriguing oncometabolite-inspired strategy for primary glioblastoma.

14.
Biomolecules ; 7(2)2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28346397

RESUMEN

Central nervous system tumors comprising the primary cancers and brain metastases remain the most lethal neoplasms and challenging to treat. Substantial evidence points to a paramount role for inflammation in the pathology leading to gliomagenesis, malignant progression and tumor aggressiveness in the central nervous system (CNS) microenvironment. This review summarizes the salient contributions of oxidative stress, interleukins, tumor necrosis factor-α (TNF-α), cyclooxygenases, and transcription factors such as signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and the associated cross-talks to the inflammatory signaling in CNS cancers. The roles of reactive astrocytes, tumor associated microglia and macrophages, metabolic alterations, microsatellite instability, O6-methylguanine DNA methyltransferase (MGMT) DNA repair and epigenetic alterations mediated by the isocitrate dehydrogenase 1 (IDH1) mutations have been discussed. The inflammatory pathways with relevance to the brain cancer treatments have been highlighted.


Asunto(s)
Neoplasias Encefálicas/patología , Carcinogénesis , Animales , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/inmunología , Citocinas/metabolismo , Humanos , Inflamación/complicaciones , Macrófagos/inmunología , Microambiente Tumoral
15.
J Biomed Res ; 30(5): 393-410, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27845303

RESUMEN

Endocrine therapy using estrogen receptor-α (ER-α) antagonists for attenuating horm2one-driven cell proliferation is a major treatment modality for breast cancers. To exploit any DNA repair deficiencies associated with endocrine therapy, we investigated the functional and physical interactions of ER-α with O6-methylguanine DNA methyltransferase (MGMT), a unique DNA repair protein that confers tumor resistance to various anticancer alkylating agents. The ER-α -positive breast cancer cell lines (MCF-7, T47D) and ER- negative cell lines (MDAMB-468, MDAMB-231), and established inhibitors of ER-α and MGMT, namely, ICI-182,780 (Faslodex) and O6-benzylguanine, respectively, were used to study MGMT- ER interactions. The MGMT gene promoter was found to harbor one full and two half estrogen-responsive elements (EREs) and two antioxidant-responsive elements (AREs). MGMT expression was upregulated by estrogen, downregulated by tamoxifen in Western blot and promoter-linked reporter assays. Similarly, both transient and stable transfections of Nrf-2 (nuclear factor-erythroid 2-related factor-2) increased the levels of MGMT protein and activity 3 to 4-fold reflecting novel regulatory nodes for this drug-resistance determinant. Of the different ER-α antagonists tested, the pure anti-estrogen fulvestrant was most potent in inhibiting the MGMT activity in a dose, time and ER-α dependent manner, similar to O6-benzylguanine. Interestingly, fulvestrant exposure led to a degradation of both ER-α and MGMT proteins and O6-benzylguanine also induced a specific loss of ER-α and MGMT proteins in MCF-7 and T47D breast cancer cells with similar kinetics. Immunoprecipitation revealed a specific association of ER-α and MGMT proteins in breast cancer cells. Furthermore, silencing of MGMT gene expression triggered a decrease in the levels of both MGMT and ER-α proteins. The involvement of proteasome in the drug-induced degradation of both proteins was also demonstrated. Fulvestrant enhanced the cytotoxicity of MGMT-targeted alkylating agents, namely, temozolomide and BCNU by 3 to 4-fold in ER-α positive cells, but not in ER-negative cells. We conclude that MGMT and ER-α proteins exist as a complex and are co-targeted for ubiquitin-conjugation and subsequent proteasomal degradation. The findings offer a clear rationale for combining alkylating agents with endocrine therapy.

16.
Bioorg Med Chem Lett ; 26(12): 2829-2833, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27156773

RESUMEN

Ethacrynic acid (EA), a known inhibitor of the neoplastic marker glutathione S-transferase P1 and other GSTs, exerts a weak antiproliferative activity against human cancer cells. The clinical use of EA (Edecrin) as an anticancer drug is limited by its potent loop diuretic activity. In this study, we developed a non-diuretic 2-amino-2-deoxy-d-glucose conjugated EA (EAG) to target tumors cells via the highly expressed glucose transporter 1 (GLUT1). Cell survival assays revealed that EAG had little effect on normal cells, but was cytotoxic 3 to 4.5-fold greater than EA. Mechanistically, the EAG induced selective cell death in cancer cells by inhibiting GSTP1 and generating abundant reactive oxygen species. Furthermore, EAG induced p21(cip1) expression and a G2/M cell cycle block irrespective of the p53 gene status in tumor cells. These data encourage the development of new EA analogs.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Ácido Etacrínico/farmacología , Glucosamina/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Ácido Etacrínico/síntesis química , Glucosamina/análogos & derivados , Glucosamina/química , Gutatión-S-Transferasa pi/antagonistas & inhibidores , Gutatión-S-Transferasa pi/metabolismo , Humanos , Estructura Molecular , Relación Estructura-Actividad
17.
Int J Oncol ; 48(4): 1426-36, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26848023

RESUMEN

Piperlongumine (PL), a small molecule alkaloid present in black pepper (Piper longum), has been reported to kill tumor cells irrespective of their p53 gene status, however, the mechanisms involved are unknown. Since p53 is a redox-sensitive protein, we hypothesized that the redox imbalance induced by PL may affect the structure and/or function of the mutant p53 protein and promote cell death. We used two human colon cancer cell lines, the HT29 and SW620 which harbor the R273H DNA contact abrogatory mutation in p53. PL treatment induced significant ROS production and protein glutathionylation with a concomitant increase in Nrf-2 expression in both cell lines. Surprisingly, immunoprecipitation with wt-p53 specific antibodies (PAb1620) or direct western blotting showed a progressive generation of wild-type-like p53 protein along with a loss of its mutant counterpart in PL-treated HT29 and SW620 cells. Moreover, the EMSA and DNA-affinity blotting revealed a time-dependent restoration of DNA-binding for the mutant p53, which was accompanied by the induction of p53 target genes, MDM2 and Bax. PL, while cytotoxic by itself, also increased the cell killing by many anticancer drugs. In nude mice bearing the HT29 tumors, PL alone (7.5 mg/kg daily) produced a 40% decrease in tumor volume, which was accompanied by diminished intratumoral mutant p53 protein levels. The antitumor efficacy of BCNU or doxorubicin in HT29 xenografts was highly potentiated by PL, followed by expression of apoptotic proteins. These clinically-relevant findings suggest that PL-induced oxidative milieu facilitates a weak functional restoration of mutant p53 through protein glutathionylation and contributes to the increased drug sensitivity.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Proteínas de Unión al ADN/genética , Dioxolanos/administración & dosificación , Resistencia a Antineoplásicos/genética , Proteína p53 Supresora de Tumor/genética , Animales , Carmustina/administración & dosificación , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Doxorrubicina/administración & dosificación , Glutatión/metabolismo , Células HT29 , Humanos , Ratones , Proteínas Mutantes/biosíntesis , Proteínas Mutantes/genética , Proteína p53 Supresora de Tumor/biosíntesis , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Eur J Med Chem ; 107: 233-44, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26599530

RESUMEN

Small molecules that can restore biological function to the p53 mutants found in human cancers have been highly sought to increase the anticancer efficacy. In efforts to generate hybrid anticancer drugs that can impact two or more targets simultaneously, we designed and developed piperlongumine (PL) derivatives with an aryl group inserted at the C-7 position. This insertion bestowed a combretastatin A4 (CA4, an established microtubule disruptor) like structure while retaining the piperlongumine configuration. The new compounds exhibited potent antiproliferative activities against eight cancer cell lines, in particular, were more cytotoxic against the SKBR-3 breast cancer cells which harbor a R175H mutation in p53 suppressor. KSS-9, a representative aryl PL chosen for further studies induced abundant ROS generation and protein glutathionylation. KSS-9 strongly disrupted the tubulin polymerization in vitro, destabilized the microtubules in cells and induced a potent G2/M cell cycle block. More interestingly, KSS-9 showed the ability to reactivate the p53 mutation and restore biological activity to the R175H mutant protein present in SKBR3 cells. Several procedures, including immunocytochemistry using conformation-specific antibodies for p53, immunoprecipitation combined with western blotting, electrophoretic shift mobility shift assays showed a reciprocal loss of mutant protein and generation of wild-type like protein. p53 reactivation was accompanied by the induction of the target genes, MDM2, p21cip1 and PUMA. Mechanistically, the redox-perturbation in cancer cells by the hybrid drug appears to underlie the p53 reactivation process. This anticancer drug approach merits further development.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Dioxolanos/química , Microtúbulos/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Técnicas de Química Sintética , Diseño de Fármacos , Femenino , Genes Supresores de Tumor , Glutatión/metabolismo , Humanos , Microtúbulos/metabolismo , Mutación , Especies Reactivas de Oxígeno/metabolismo , Estilbenos/química , Proteína p53 Supresora de Tumor/metabolismo
19.
Mini Rev Med Chem ; 16(6): 455-64, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26202203

RESUMEN

O(6)-Methylguanine-DNA-methyltransferase (MGMT) is an antimutagenic DNA repair protein highly expressed in human brain tumors. Because MGMT repairs the mutagenic, carcinogenic and cytotoxic O(6)-alkylguanine adducts, including those generated by the clinically used anticancer alkylating agents, it has emerged as a central and rational target for overcoming tumor resistance to alkylating agents. Although the pseudosubstrates for MGMT [O(6)-benzylguanine, O(6)-(4- bromothenyl)guanine] have gained attention as powerful and clinically-relevant inhibitors, bone marrow suppression due to excessive alkylation damage has diminished this strategy. Our laboratory has been working on various posttranslational modifications of MGMT that affect its protein stability, DNA repair activity and response to oxidative stress. While these modifications greatly impact the physiological regulation of MGMT, they also highlight the opportunities for inactivating DNA repair and new drug discovery in this specific area. This review briefly describes the newer aspects of MGMT posttranslational regulation by ubiquitination, sumoylation and glutathionylation and reveals how the reactivity of the active site Cys145 can be exploited for potent inhibition and depletion of MGMT by thiol-reacting drugs such as the disulfiram and various dithiocarbamate derivatives. The possible repurposing of these nontoxic and safe drugs for improved therapy of pediatric and adult brain tumors is discussed.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Encéfalo/efectos de los fármacos , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Animales , Antineoplásicos Alquilantes/uso terapéutico , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Cisteína/análisis , Cisteína/metabolismo , Reparación del ADN/efectos de los fármacos , Descubrimiento de Drogas/métodos , Glutatión/análisis , Glutatión/metabolismo , Humanos , Modelos Moleculares , Terapia Molecular Dirigida/métodos , O(6)-Metilguanina-ADN Metiltransferasa/análisis , Estrés Oxidativo/efectos de los fármacos , Procesamiento Proteico-Postraduccional
20.
Int J Oncol ; 47(4): 1393-404, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26315939

RESUMEN

ß1,4-Galactosylransferases are a family of enzymes encoded by seven B4GALT genes and are involved in the development of anticancer drug resistance and metastasis. Among these genes, the B4GALT1 shows significant variations in the transcript origination sites in different cell types/tissues and encodes an interesting dually partitioning ß-1, 4-galactosyltransferase protein. We identified at 5'-end of B4GALT1 a 1.454 kb sequence forming a transcription regulatory region, referred to by us as the TR1-PE1, had all characteristics of a bidirectional promoter directing the transcription of B4GALT1 in a divergent manner along with its long non-coding RNA (lncRNA) antisense counterpart B4GALT1-AS1. The TR1-PE1 showed unique dinucleotide base-stacking energy values specific to transcription factor binding sites (TFBSs), INR and BRE, and harbored CpG Island (CGI) that showed GC skew with potential for R-loop formation at the transcription starting sites (TSSs). The 5'-regulatory axis of B4GALT1 also included five more novel TFBSs for CTCF, GLI1, TCF7L2, GATA3 and SOX5, in addition to unique (TG)18 repeats in conjunction with 22 nucleotide TG-associated sequence (TGAS). The five lncRNA B4GALT1-AS1 transcripts showed significant complementarity with B4GALT1 mRNA. In contrast, the rest of B4GALT genes showed fewer lncRNAs, and all lacked the (TG)18 and TGAS. Our results are strongly supported by the FANTOM5 study which showed tissue-specific variations in transcript origination sites for this gene. We suggest that the unique expression patterns for the B4GALT1 in normal and malignant tissues are controlled by a differential usage of 5'-B4GALT1 regulatory units along with a post-transcriptional regulation by the antisense RNA, which in turn govern the cell-matrix interactions, neoplastic progression, anticancer drug sensitivity, and could be utilized in personalized therapy.


Asunto(s)
Galactosiltransferasas/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias/genética , Regiones Promotoras Genéticas/genética , Transcripción Genética/genética , Secuencia de Bases , Humanos , Datos de Secuencia Molecular , Procesamiento Postranscripcional del ARN , ARN Largo no Codificante/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...